Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Global Risks.doc
Скачиваний:
125
Добавлен:
24.08.2019
Размер:
12.42 Mб
Скачать

Майкл Рампино. Супервулканизм и другие катастрофические геофизические процессы

Michael R. Rampino. Super-volcanism and other geophysical processes of catastrophic import

Опубликовано в сборнике:

Global Catastrophic Risks. Edited by Nick Bostrom, Milan M. Cirkovic, OXPORD UNIVERSITY PRESS, 2008

Перевод: А.В. Турчин

Введение

С целью классифицировать вулканические извержения и их потенциальные эффекты на атмосферу, Newhall and Self (1982) предложили шкалу силы извержений, индекс вулканической активности, VEI, основанный на объёме извергнутых продуктов (и на высоте вулканической эруптивной колонны). VEI может быть от VEI=0 (для строго не эксплозивных извержений) до VEI=8 (для эксплозивных извержений, создающих ~1012 куб м. продуктов вулканических извержений). Скорость извержений при VEI=8 может быть больше, чем 106 куб.м/сек. (Ninkovich et al., 1978a, 1978b).

Извержения также различаются по количеству богатых серой газов, высвобождаемых в форме стратосферных аэрозолей. Таким образом, содержание серы в магме, степень дегазации и высота эруптивной колонны являются важными факторами климатических эффектов извержения. (Palais and Sigurdsson, 1989; Rampino and Self, 1984). Исторически известные извержения с VEI от 3 до 6 (то есть с объёмом извергнутого материала от <1 куб. км. до нескольких десятков куб.км.) создавали стратосферные облака аэрозолей массой до нескольких десятков мегатонн. Эти извержения, включающие Тамбора 1815 и Кракатау 1883, привели к охлаждению Земли на несколько десятых долей градуса Цельсия. (Rampino and Self, 1984). Наиболее недавний пример такого рода – извержение Пинатубо 1991 на Филиппинах. (Graf et al., 1993; Hansen et al., 1996).

Вулканические суперизвержения определяются как извержения, которые в десятки или сотни раз сильнее, чем исторически известные извержения и достигают силы VEI=8 8 (Mason et al., 2004; Rampino, 2002; Rampino et al., 1988; Sparks et al., 2005). Суперизвержения обычно создают кальдеры, и более чем 20 мест суперизвержений было обнаружено в Северной Америке, Южной Америке, Италии, Индонезии, Филиппинах, Японии, на Камчатке и в Новой Зеландии. Нет сомнения, что есть и другие, ещё неоткрытые места суперизвержений, имевших место в последние миллионы лет. (Sparks etal., 2005).

Поздне-Плейстоценовое извержение Тоба на Суматре в Индонезии было одним из величайших вулканических событий в геологической истории (Ninkovich et al., 1978a, 1978b; Rampino and Self, 1993a; Rose and Chesner, 1990). Относительно небольшой возраст и исключительный размер извержения в Тоба делает его важным примером для изучения возможных эффектов взрывного вулканизма на глобальную атмосферу и климат. (Oppenheimer, 2002; Rampino and Self, 1992, 1993a; Rampino etal., 1988; Sparks etal., 2005).

В отношении событий в Тоба у нас есть данные по наполнению кальдеры, отложениям пирокластичесих потоков и количества выпавшей тефры. Новейшие данные по экологическим последствиям суперизвержений подтверждают исключительную величину климатического воздействия извержения Тобы, приведшего к значительным изменениям окружающей среды и человеческой популяции.

  • Влияния суперизвержения на атмосферу

Извержение Тобы было датировано разными методами, например, K/Ar метод даёт 73,500 ± 3500 лет назад (Chesner et al., 1991). Отложения пепла Тобы обнаруживаются в кернах с морского дна в Индийском океане и Южно-китайском море. (Huang et al., 2001; Shultz et al., 2002; Song et al., 2000). Эти отложения пепла эквивалентны по объёму 800 куб.км. твёрдой породы. (Chesner etal., 1991). Отложения пирокластических потоков на Суматре имеют объём примерно в 2000 куб.км. (Chesner etal., 1991; Rose and Chesner, 1990). Это даёт эквивалент твёрдой породы для всего извержения примерно в 2800 куб. км. Woods and Wohletz (1991) оценили высоту эруптивных облаков Тобы в 32 ± 5 км, а время выпадения пепла над Индийским океаном – в две недели или меньше. (Ledbetter and Sparks, 1979).

Высвобождение летучих соединений серы имеет исключительное значение для климатического воздействия извержения, так как в результате возникают аэрозоли серной кислоты в стратосфере (Rampino and Self, 1984). Хотя содержание серы в риолитовых магмах в целом низкое, большой извергнутый объём достаточен, чтобы привести к большому выбросу летучих веществ. На основании изучения концентраций серы в депозитах Тобы, Rose and Chesner (1990) оценили, что примерно 3 x 1015 гр H2S/SO2 (эквивалентно 1 x 1016 гр. аэрозолей H2SO4) могло высвободится из извергнутой магмы. Количество мелкодисперсного пепла и аэрозолей серной кислоты, которые могли быть выброшены Тобой, было оценено независимо на основании данных меньших исторических извержений (Rampino and Self, 1992). По этим оценкам, сверхизвержение Тоба могло создать вплоть до to 2 x 1016 г. мелкодисперсной пыли и примерно 1.5 x 1015 г. аэрозолей серной кислоты.

Физические и химические процессы в плотном аэрозольном облаке могут действовать самоограничивающим образом, значительно уменьшая количество аэрозолей серной кислоты (Rampino and Self, 1982; Pinto et al., 1989). Используя одномерную микрофизическую и фотохимическую модель аэрозолей, Пинто (1989) показал, что в аэрозольном облаке, содержащем 1014 гр. SO2 важную роль играю конденсация и коагуляция, которые приводят к возникновению более крупных частиц, которые имеют меньший оптический эффект на единицу массы, и быстрее выпадают из атмосферы. Однако, максимальное количество летучих соединений серы, которое они моделировали, было 2 x 1014 гр. SO2, и нет никаких данных относительно поведения больших количеств аэрозолей серной кислоты в более чем в 10 раз плотных облаках.

Другое возможное ограничение количества аэрозолей – это количество доступной воды в стратосфере, необходимой для превращения SO2 в H2SO4. Stothers et al. (1986) посчитали, что 4 x 1015 гр. воды доступно в стратосфере, и извержение Тобы могло добавить туда 5.4 x 1017 гр. H2O (Rose and Chesner, 1990), чего более чем достаточно, чтобы превратить серосодержащие газы в аэрозоли серной кислоты.

Исключительная сила извержения Тобы сделало его естественным предметом изучения с помощью анализа кернов полярного льда. Исследования кернов льда из пробы GISP2 в Саммите, Гренландия, показали шестилетний период повышенной концентрации вулканической серы, датирующийся 71,100 ± 5000 и связанные с извержением в Тоба (Zielinski et al., 1996a, 1996b). Магнитуда этого всплеска содержания серы является самой большой за последние 110 000 лет по результатам GISP2.

Zielinski и др. (1996a) оценили, что полное суммарное атмосферное содержание H2SO4 за приблизительно 6-летний период находится в пределах от 0.7 до 4.4 x 1015 гр, что в целом согласуется с приведёнными выше оценками на основании вулканологических техник и сравнения с меньшими извержениями. (Rampino and Self, 1992,1993a; Rose and Chesner, 1990). (Оценка количества находящихся в атмосфере (aerosol loadings) аэрозолей находится в пределах от 150 до 1000 мегатонн в год в течение приблизительно 6-летнего периода пика в кернах льда.)

Сигнал SO2, идентифицируемый с извержением Тоба, совпадает с началом 1000-летнего периода похолодания, обнаруживаемого по кернам льда между двумя короткими тёплыми периодами (межстадиальными), но отделённым от наиболее недавнего большого 9000-летнего оледенения примерно 2000-летним тёплым периодом. Подобный же период похолодания между межстадиальными потеплениями можно наблюдать по следам пыльцы в северной Франции, с датировкой примерно 70 000 лет до назад. (Woillard and Mook, 1982).

Таким образом, информация из кернов льда свидетельствует, что след от Тобы обнаруживается в период перехода от тёплого межледникового климата и предшествовался и последовался резкими климатическими осцилляциями, которые предшествовали началу последнего большого оледенения. (Zielinski et al., 1996a, 1996b).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]