Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реп консп.СВ ЕРО 1+2.docx
Скачиваний:
10
Добавлен:
23.08.2019
Размер:
3.71 Mб
Скачать

Тема 11.Будова атома за Резерфордом-Бором.

1.Досліди Резерфорда і ядерна модель атома.

Перша спроба створення моделі атома на основі нагромаджених експериментальних даних належить Дж. Томсону (1903р.). Згідно з цією моделлю атом є рів­номірно зарядженою кулею радіусом ~ , всередині якої біля своїх положень рівноваги коливаються електрони; сумарний від’ємний заряд електронів до­рівнює додатному заряду кулі. Модель Томсона виявилась неправильною.

Велику роль у розвитку уявлень про будову атома відіграли досліди Е. Резер­форда із вивчення розсіяння a- частинок в речовині.

a-частинки утворюються під час природного радіоактивного розпаду деяких важких елементів і є позитивно за­рядженими частинками з зарядом 2е і масою, яка приблизно в чотири рази більша за масу атома водню.

Спрощена схема досліду Резерфорда зображена на рис. 281.

Джерело a- частинок поміщене всередині свинцевої порожнини з вузьким каналом. Усі a-частинки, крім тих, що рухаються всередині вузького каналу, поглинаються свинцем. Потік a-частинок, пройшовши через вузьку діафрагму Д, потрапляє на тонку золоту фольгу Ф завтовшки , що складається з де­кількох атомних шарів. При проходженні через фольгу a-частинки відхиляються на різні кути і потрапляють на екран Е, який можна поміщати в різних положеннях відносно фольги. Екран покритий флюоресцентною речовиною. За допомогою мікроскопа М можна спостерігати міс­ця потрапляння a-частинок за свіченням екрану. Поведінку a-частинок після проходження через фольгу вивчали в камері Вільсона.

Резерфорд з’ясував, що потік a-частинок, пройшовши крізь фольгу, майже не відхиляється від прямолінійного нап­рямку і лише деякі частинки змінють нап­рямок руху, відхиляючись на дуже великі кути, близько 135 150°(рис. 282).

На підставі досліду Резерфорд зробив такі висновки.

  1. Оскільки переважна більшість a-части­нок проходить через атоми, не змінюючи свого напрямку, то атом прозорий і частинки, на яких відбувається розсіювання, займають об’єм значно менший за об’єм атома.

  2. Тому що при розсіюванні спостеріга­ються кути відхилення a-частинок близько 150°, то взаємодіють одноіменно заряджені частинки, тобто роз­сіювання відбувається на позитивно заряджених частинках.

  3. Після проходження a-частинкою фоль­ги в камері Вільсона спостерігалися треки однакової довжини, які належать лише a-частинці. Отже, маса частинки, на якій відбувається розсіювання, знач­но більша від маси a-частинки і через це вона не отримує прискорення.

  4. Резерфорд приблизно розрахував розмір частинки, на якій відбувається розсіювання. Розглянемо центральний удар a-частинки, який відповідає куту розсіяння . Із закону збереження енергії випливає, що в момент найбільшого зближення a-частинки з невідомою частинкою її кінетична енергія цілком перейде в потенціальну енергію їх взаємодії:

.

Оцінимо величину R для золота . Якщо припустити, що швидкість a-частинки , її маса , заряд електрона , то

.

В той же час, радіус атома .

Таким чином, частинка на якій відбувається розсіювання a-частинок займає в атомі об’єм, який значно менший від об’єму атома.

Резерфорд теоретично розглянув задачу про розсіювання a-частинок у кулонівському електричному полі частинки, що має заряд Q. Кут відхилення a- частинок тим більший, чим менша віддаль p від ядра до початкового напрямку руху a-частинки (рис. 282). Віддаль p називається „параметром удару”.

Закони динаміки дозволяють розрахувати залежність кута відхилення від параметра удару р, а методами теорії ймовірностей можна знайти ймовірність пролітання a-частинки на даній відстані р від частинки і тим самим ймовірність її відхилення на кут . Розрахунок показує, що із загального числа розсіяних N a-частинок в тілесному куті , що міститься між двома конічними поверхнями, твірні які утворюють кути і з початковим нап­рямком руху a-частинок, розсіюється така їх кількість: ,

де n – кількість a-частинок, які налітають на частинку через одиницю площі поперечного перерізу пучка за одиницю часу.

Для певної розсіюючої речовини при певній енергії a-частинок і заданій густині їх потоку добуток повинен бути сталим, що було експерименталь­но підтверджено в дослідах Гейгера і Марсдена.

Наведена формула дозволяє за виміряним числом частинок, які розсіяні під певним кутом , визначити величину позитивного заряду , тому, що всі інші величини, що входять у цю формулу, доступ­ні вимірюванню. Оскільки атоми в нор­мальному стані нейтральні, то позитивний заряд повинен бути цілим кратним від значення заряду електрона: ,

де Z – ціле число. На основі вимірювань Резерфорда виникла гіпотеза, що величина Z дорівнює порядковому номеру елементу в таблиці Менделєєва. Пізніше ця гіпотеза підтвердилася.Знаючи заряд частинки , можна знайти, який „параметр удару” відповідає різним кутам удару .

На підставі результатів дослідів з розсіянням a-частинок тонкими фольгами Резерфорд запропонував ядерну модель атома.

Згідно з цією моделлю в центрі атома знаходиться ядро, в якому зосереджено позитивний заряд Ze і практично вся маса атома. Лінійні розміри ядра ~ .

Навколо ядра в області з лінійними розмірами ~ по замкнених орбітах рухаються Z електронів, утворюючи електронну оболонку атома.

Ядерна модель Резерфорда зовні дуже нагадує Сонячну систему: у центрі – ядро, навколо нього по орбітах рухаються електрони. Тому цю модель називають планетарною. Орбіти електронів в атомі стаціонарні, атому властива виняткова стійкість.

Стійкість атома не можна погодити з класичним поясненням ядерної моделі. Електрон по коловій орбіті рухається з доцентровим прискоренням , а згідно із законами електродинаміки він повинен випромінювати електромагнітні хвилі і внаслідок цього неперервно втрачати енер­гію. За класичними уявленнями це випромінювання повинно відбуватися безперервно. Тому електрон не зможе триматись на коловій орбіті – він повинен по спіралі наближатись до ядра, і частота його обертання навколо ядра повинна безперервно змінюватись. Електромагнітне випромінювання атома тому повинно мати неперер­вний, а не лінійчастий спектр.

Отже, застосування класичної електродинаміки до ядерної моделі атома привело до суперечності з експериментальними фактами.

2.Постулати Бора та їх дослідне підтвердження.

Перша спроба побудови якісно нової теорії атома була зроблена в 1913 р. Н.Бором. Він поставив перед собою мету зв’язати в єдине ціле емпіричні закономірності лінійчастих спектрів, ядерну модель атома Резерфорда і квантовий характер випромінювання та поглинання світла.

В основу своєї теорії Бор поклав три постулати.

Перший постулат Бора (постулат стаціонарних станів): існують деякі стаціонарні стани атома з відповідними значеннями енергії перебуваючи в яких, він не випромінює енергії.

Цим стаціонарним станам відповідають цілком визначені (стаціонарні) орбіти, по яких рухаються електрони, які, нез­важаючи на наявність у них прискорення, електромагнітних хвиль не випромінюють.

Другий постулат Бора (правило квантування орбіт): в стаціонарному стані атома електрон, рухаючись по коловій орбіті, повинен мати квантові значення моменту імпульсу, які задовольняють умову

, , ,

де m – маса електрона, – його швидкість, – радіус орбіти електрона.

Третій постулат Бора (правило частот): при переході атома з одного стаціонарного стану в інший випромінюється або поглинається один фотон з енергією , яка дорівнює різниці енергій відповідних стаціонарних станів.

Випромінювання фотона відбувається при переході атома зі стану з більшою енергією у стан з меншою енергією , тобто при переході електрона з орбіти більш віддаленої від ядра на ближчу до ядра орбіту. Поглинання енергії супроводжується переходом атома у стан з біль­шою енергією, і електрон переходить на віддаленішу від ядра орбіту. Набір можливих частот квантових переходів і визначає лінійчастий спектр атома.

Постулати, висунуті Бором, дозволили розрахувати спектр атома водню і воднеподібних систем, а також теоретично розрахувати сталу Рідберга.