- •Псковский государственный политехнический институт
- •Н.В. Мотина
- •Дискретная математика
- •Методические указания по выполнению контрольных работ
- •230101 «Вычислительные машины, комплексы, системы и сети»,
- •230201 «Информационные системы и технологии»
- •Псков Издательство ппи
- •Часть 1. Краткий теоретический материал 6
- •Часть 2 47
- •Порядок выполнения контрольной работы
- •Часть 1. Краткий теоретический материал
- •1. Операции над множествами
- •1.1. Понятие множества
- •1.2. Объединение, пересечение, дополнение, разность множеств
- •1.3. Прямое произведение множеств
- •Контрольные вопросы
- •2. Отношения
- •2.1. Понятие бинарного отношения
- •2.2. Обратное отношение
- •2.3. Композиция отношений
- •2.4. Векторы
- •Контрольные вопросы
- •3. Соответствия
- •Контрольные вопросы
- •4. Виды графов
- •4.1. Понятие графа
- •4.2. Связность
- •4.3. Планарность
- •4.4. Деревья
- •Контрольные вопросы
- •5. Способы задания графов
- •5.1. Матрица смежности
- •5.2. Матрица инциденций
- •Контрольные вопросы
- •6. Маршруты, цепи, циклы
- •6.1. Основные определения
- •6.2. Эйлеровы циклы
- •6.3. Гамильтоновы циклы
- •Контрольные вопросы
- •7. Преобразование логических выражений
- •7.1. Понятие логической функции
- •Продолжение табл.2
- •7.2. Тождества булевой алгебры
- •7.3. Правила преобразования некоторых логических функций
- •Контрольные вопросы
- •8. Минимизация логических функций
- •8.1. Минимизация с помощью карт Карно
- •8.2. Метод Квайна поиска СокДнф
- •8.3. Метод Квайна – Мак-Класки
- •8.4. Нахождение мкнф с помощью карты Карно
- •8.5. Минимизация логических функций, представленных в конъюнктивной форме, с использованием правил, аналогичных правилам минимизации логических функций в дизъюнктивной форме
- •8.6. Минимизация неполностью определенных логических функций с помощью карты Карно
- •8.7. Минимизация неполностью определенных логических функций без использования карты Карно
- •Контрольные вопросы
- •9. Свойства логических функций
- •Контрольные вопросы
- •Часть 2 Варианты заданий Задание 1. Операции над множествами
- •Задание 2. Отношения
- •Задание 3. Соответствия
- •Задание 4. Виды графов
- •Задание 5. Способы задания графов
- •Задание 6. Маршруты, цепи, циклы
- •Задание 7. Преобразование логических выражений
- •Задание 8. Минимизация логических функций
- •Задание 9. Свойства логических функций
- •Пример оформления контрольной работы
- •Рекомендуемая литература
- •Мотина Надежда Владимировна
8.4. Нахождение мкнф с помощью карты Карно
Алгоритм поиска МКНФ с использованием карт Карно:
Составить карту Карно.
Обвести контурами нулевые ячейки.
При записи МКНФ переменные, образующие контур, инвертируются, объединяются в дизъюнкции, а затем – в конъюнкции.
Пример. Найти МКНФ функции, заданной таблицей, с помощью карты Карно.
x |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
y |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
z |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
t |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
f |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
8.5. Минимизация логических функций, представленных в конъюнктивной форме, с использованием правил, аналогичных правилам минимизации логических функций в дизъюнктивной форме
КНФ КСНФ СокКНФ ТКНФ МКНФ
a) При табличном задании записать функцию в виде конъюнкции конституент нуля, соответствующих наборам, на которых функция равна нулю. Если функция задана произвольной КНФ, то применить формулы развертывания:
b) Выполнить все возможные операции неполного склеивания и поглощения:
c) и d) Построить матрицу, столбцы которой образуют конституенты нуля КСНФ, а строки – члены СокКНФ. В МКНФ должно входить минимальное число строк, перекрывающих все столбцы.
Пример. Функция задана таблицей
x |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
y |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
z |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
t |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
f |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 - 2 * 2 - 3 * 3 - 4 4 - 5
1 - 3 2 - 4 3 - 5 4 - 6
1 - 4 2 - 5 3 – 6 4 - 7
1 - 5 * 2 - 6 3 – 7 4 - 8 *
1 - 6 2 - 7 3 - 8
1 - 7 2 - 8
1 - 8
5 - 6 * 6 - 7 7 - 8 *
5 - 7* 6 - 8*
5 - 8
1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 * 7 - 8
1 - 3 2 - 4 3 - 5 4 - 6 5 - 7 6 - 8
1 - 4 2 - 5 3 - 6 4 - 7 5 - 8 *
1 - 5 2 - 6 3 - 7 4 - 8
1 - 6 2 - 7 3 - 8
1 - 7 2 - 8
1 - 8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|