Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzam_Kuzmin_2_sem.docx
Скачиваний:
23
Добавлен:
23.08.2019
Размер:
510.87 Кб
Скачать

Влияние мелководья на движущееся судно.

Понятие “мелководье” относительно. Влияние мелководья на поведение судна зависит не только от глубины моря, но и от габаритов судна и его скорости. Судно на ограниченных глубинах, особенно в узкостях, испытывает влияние гидромеханических сил в большей степени, чем на глубокой воде:Уравнение неразрывности жидкости: где V1; V2 – скорости перемещения жидкости в отдельных сечениях потока; S1, S2 – площади соответствующих сечений потока. Уравнение Бернулли в случае горизонтального перемещения жидкости: где Р – давление жидкости на данном участке;γ – плотность жидкости;g – ускорение свободного паденияV – скорость жидкости.

Уравнение Бернулли показывает, что с одной стороны, при увеличении скорости движения жидкости на каком либо участке давление в данном потоке уменьшается и, с другой стороны при повышении давления скорость движения жидкости падает.

21. Взаимодействие судов со стенками каналов при встречном расхождении схематично выглядит следующим образом:I. Когда до встречного судна остается 2–3 длины корпуса, оба судна уменьшают скорость до минимальной, достаточной для удержания на курсе, кладут руль право на борт и выходят ближе к кромке канала. Приближаться раньше к кромке канала нельзя, т. к. удерживать судно вплотную к бровке длительное время трудно.II. Когда форштевни судов поравняются, руль перекладывают влево, чтобы отвести корму и увеличивают вращение винта. Суда огибают друг друга, совершая плавный поворот влево.III. Когда носовая часть подходит к миделю другого судна, руль перекладывают вправо, чтобы нейтрализовать движение кормы к бровке канала. Под влиянием взаимодействия гидродинамических сил между судами, судами и берегом оба судна стремятся развернуться влево. Следует контролировать движение судов, но не препятствовать их плавному развороту влево.IV. Как только оба судна разойдутся чисто, под действием гидродинамических сил оба судна будут стремиться выйти на ось канала. Движению необходимо помогать рулем и при выходе на ось канала задержать судно на заданном курсе.

V. Если одно из судов (Б) на траверзе судна А заранее задержит движение влево, переложив руль на правый борт, тогда под действием гидродинамических сил от судна А и от берега оно после расхождения окажется слишком близко к берегу и может резко пойти влево, перегородив канал. В этом случае руль перекладывают вправо, чтобы нейтрализовать движение кормы к бровке канала.

Взаимодействие судов между собой и стенками канала при обгоне схематически выглядит так:

I. При приближении обгоняющего судна А к траверзу кормы Б руль на Б перекладывают вправо, чтобы удержать судно Б от разворота в сторону обгоняющего.II. Когда мидель обгоняющего судна А поравняется с кормой обгоняемого Б, перекладывают руль на Б на левый борт, чтобы удержать его корму от навала.III. По завершению обгона судно Б может оказаться значительно правее прежнего пути. Для постепенного возвращения к оси канала руль следует поставить в ДП. Если после обгона судно Б будет очень близко к берегу, тогда, чтобы корма не навалилась на берег, руль перекладывают вправо, сохраняя движение к оси канала.

22. Основными факторами, действующими на судно во время шторма, являются ветер, волнение и качка.

Воздействие ветра на судно определяется его направлением и силой, формой и размерами площади парусности судна, расположением центра парусности, значениями осадки и дифферента.Действие ветра в пределах курсовых углов 0 – 1100 вызывают потерю скорости, а при больших курсовых углах и силе ветра не свыше 3 -4 баллов – некоторое её приращение.Действие ветра в пределах 30 – 1200 сопровождается дрейфом и ветровым креном. Удельное давление ветра на судно приближенно можно рассчитать Р ≈ 0.008 W2 ( Ураган W=40 – 50 м/с, Р ≈ 130 – 200 кгс/м2 )Полное давление ветра на судно или гидродинамическая сила будет равна: А ≈ Р QТак как ЦП по миделю не совпадает с Ц.Т., то аэродинамическая сила будет создавать кренящий момент: МКР = АY( ZЦП - ) Где ZЦП – аппликата центра парусности, м; dСР – средняя осадка судна, м.

Волнение моря оказывает наиболее существенное влияние на судно. Оно сопровождается действием на корпус значительных динамических нагрузок и качкой судна. При плавании на волнении увеличивается сопротивление корпуса судна и ухудшаются условия совместной работы винтов,корпуса и главных двигателей. В результате снижается скорость, увеличивается нагрузка па главные машины, повышается расход топлива и уменьшается дальность плавания судна. Потеря скорости судна. Скорость судна на волнении всегда меньше, чем в тихую погоду, вследствие:

  • увеличения сопротивления движению судна как из-за непосредственного воздействия на корпус ветра и волн, так и их вторичного влияния через различные виды качки и рыскание судна на курсе;

  • снижения эффективности действия гребного винта; ограничения используемой мощности двигателя вследствие разгона гребного винта;

  • намеренного снижения скорости при возникновении ударов корпуса о волны (слеминг, удары волн в развал носа), заливания палубы и надстроек, чрезмерных ускорений при качке и др.

Основная часть естественной потери скорости судна обусловлена средним дополнительным сопротивлением, которое вызвано ветром и волнами.

Рыскание судна. В отличие от бортовой, килевой и вертикальной качек рыскание судна относят к дополнительным видам качки.При оценке влияния рыскания на эксплуатационную скорость судна можно выделить следующие основные факторы, действие которых может сказаться на его ходовых качествах:

  • увеличение сопротивления корпуса вследствие движения судна с переменным по времени углом дрейфа;

  • увеличение сопротивления из-за перекладок руля;

  • увеличение длины пути, проходимого судном;

  • изменение режима работы гребного винта;

  • повышенный расход топлива и др.

Ориентировочно потеря скорости судна в зависимости от среднего угла рыскания и перекладки руля может достигать 13%.Потеря скорости на удлинении пути вследствие рыскания незначительна. Например, для углов рыскания ±5° она составляет около 0,12-0,20 %.При отклонении курса судна до 30—40° от встречного ветра и волнения дополнительное сопротивление может возрастать, что вызывает не только непосредственным влиянием ветра, волнения моря и качки, но и повышенным рысканием на курсе.

23. Форма и размеры волн характеризуются следующими элементами (рис.13.1 ):высота волны - h — расстояние по вертикали от вершины до подошвы волны;длина волны - λ — расстояние по горизонтали между двумя соседними гребнями или подошвами;-период волны τ — промежуток времени, в течение которого волна проходит расстояние, равное своей длине ;скорость волны С — расстояние, проходимое волной в единицу времени.

Потеря скорости судна. Скорость судна на волнении всегда меньше, чем в тихую погоду, вследствие:увеличения сопротивления движению судна как из-за непосредственного воздействия на корпус ветра и волн, так и их вторичного влияния через различные виды качки и рыскание судна на курсе;снижения эффективности действия гребного винта; ограничения используемой мощности двигателя вследствие разгона гребного винта;намеренного снижения скорости при возникновении ударов корпуса о волны (слеминг, удары волн в развал носа), заливания палубы и надстроек, чрезмерных ускорений при качке и др.Основная часть естественной потери скорости судна обусловлена средним дополнительным сопротивлением, которое вызвано ветром и волнами.

Рыскание судна. В отличие от бортовой, килевой и вертикальной качек рыскание судна относят к дополнительным видам качки.

При оценке влияния рыскания на эксплуатационную скорость судна можно выделить следующие основные факторы, действие которых может сказаться на его ходовых качествах:увеличение сопротивления корпуса вследствие движения судна с переменным по времени углом дрейфа;увеличение сопротивления из-за перекладок руля;увеличение длины пути, проходимого судном;изменение режима работы гребного винта;повышенный расход топлива и др.

Ориентировочно потеря скорости судна в зависимости от среднего угла рыскания и перекладки руля может достигать 13%.

Потеря скорости на удлинении пути вследствие рыскания незначительна. Например, для углов рыскания ±5° она составляет около 0,12-0,20 %.При отклонении курса судна до 30—40° от встречного ветра и волнения дополнительное сопротивление может возрастать, что вызывает не только непосредственным влиянием ветра, волнения моря и качки, но и повышенным рысканием на курсе.Наибольшей скорости судно достигает при равенстве предельной тяги винта полному сопротивлению движения. Предельную полезную тягу винт развивает, когда двигатель работает по заградительной характеристике, ограничивающей мощность и частоту вращения двигателя при перегрузках в эксплуатации. У дизеля это ограничение более жесткое, чем у паровой турбины. Кроме того, пропульсивный коэффициент судна падает с ростом сопротивления из-за снижения эффективности гребного винта, которое зависит от его гидродинамических качеств. ВРШ в этом случае имеют преимущество перед ВФШ.

Слеминг. Слеминг (днищевой) возникает в процессе продольной качки при оголении носовой оконечности и последующем соударении с волной. Большие динамические нагрузки могут привести к серьезным повреждениям конструкций корпуса и оборудования. Особенности слеминга как физического явления определяются в основном совместным выполнением двух условий: оголением днища и входом его в воду с вертикальной скоростью относительно воды, большей (З ~-4)√L, м/с. Вероятность опасных ударов тем больше, чем больше высота волн и скорость судна. Наблюдаются они на встречном волнении в широком диапазоне курсовых углов, Поэтому отклонение по курсу от чисто встречного движения не всегда является эффективным средством избежать опасности слеминга. Избежать опасные удары волн легче снижением скорости или увеличением осадки судна носом.

Заливание палубы и удары волн в развал носа судна. Эти явления вызывают повреждения бака, палубного оборудования, трубопроводов, конструкций люковых закрытий, палубного груза, комингсов трюмов и т. д.Удары волн в развал носа (бортовой слеминг или випинг) сами по себе вызывают вибрацию, вмятины в верхней части наружной обшивки носа и в палубе полубака. Многочисленны случаи повреждения груза. Вероятность подмочки груза на практике оказывается примерно вдвое больше вероятности механических повреждений.Для избегания заливания палубы наиболее рационально снизить скорость судна или уменьшить осадку носом.

Разгон гребного винта и двигателя. Переменные гидродинамические силы и моменты, действующие на винт при качке, могут привести к поломке лопастей, конструкций гребного валопровода, вызвать вибрацию вала и кормы. Напряжения при оголении винта в гребном валу могут возрасти в 2—3 раза. Разгон винтов более вероятен для судов, на которых винты имеют малое погружение, большие удельные упоры, большие отношения шага к диаметру и частоты вращения. Разгон винта наименее опасен для турборедукториой пропульсивной установки и наиболее неблагоприятен для дизеля. Для избегания опасности разгона винта может служить увеличение осадки судна кормой или маневрирование скоростью на волнении путем снижения шага ВРШ. Судоводители должны уметь рационально пользоваться этими средствами для обеспечения мореходности своих судов.

24. Безопасность судна с точки зрения остойчивости определяется не только его конструкцией и распределением грузов, но и курсом, а также скоростью. В условиях развитого волнения непрерывно меняется форма действующей ватерлинии. Соответственно, изменяются форма погруженной части корпуса, плечи остойчивости формы и восстанавливающие моменты.

Пребывание судна на подошве волны сопровождается увеличением восстанавливающих моментов. Пребывание судна (особенно длительное) на гребне волны опасно и может привести к опрокидыванию. Наиболее опасна резонансная качка, при которой период собственных колебаний судна T1,2 равен видимому (наблюдаемому) периоду волны τ'. Характер бортовой резонансной качки показан на рис. 13.4. Как следует из рисунка, явление резонанса наблюдается при отношении

Зона тяжелой качни

Дорезонансная

Резонанс

Рис. 13.2. Резонансная качка

Особенно опасна резонансная качка при положение судна лагом к волне.

При следовании судна курсом против волны значительно возрастают потери в скорости, происходят оголение оконечностей и резкие броски оборотов. Удары волн в днище носовой оконечности (явление «слемминга») могут привести к деформации корпуса и срыву отдельных механизмов и устройств с фундаментов.

При следовании по волне судно в меньшей степени подвержено ударам волн. Однако следование его по волне со скоростью, близкой к скорости волны VC= (0,6—~ 1,4)С (судно «оседлало» волну), приводит к резкой потере поперечной остойчивости в связи с изменением формы и площади действующей ватерлинии, а это ведет к возникновению гироскопического момента,

действующего в плоскости ватерлинии и значительно ухудшающего управляе-мость судна. Наиболее опасно плавание малого судна на попутном волнении, когда λ ≈ L судна, a VC ≈ C.

25. Выбор места якорной стоянки определяется ее целями, продолжительностью, гидрометеорологическими условиями и состоянием самого судна.На внутреннем рейде постановка судна на якорь осуществляется в строго определенном месте по указанию лоцмана или в соответствии с правилами порта и, следовательно, судоводителю не представляется возможности выбора места якорной стоянки.Места якорных стоянок на внешних рейдах крупных морских портов обычно указываются в лоциях и на картах. В этом случае обязанность судоводителя сводится только к выбору места отдачи якоря на указанной стоянке, которое должно быть сделано с учетом свободной акватории рейда и возможных изменений положения судна в случае смены направления и силы ветра или течения.Значительно более широкие требования к выбору якорной стоянки должны предъявляться в тех случаях, когда постановка на якорь производится для длительного отстоя на больших по площади рейдах или в отдельных бухтах.Такая стоянка должна располагаться в местах, по возможности закрытых от господствующих ветров и течений, быть безопасной в навигационном отношении. Особое внимание следует уделять характеру грунта и рельефу дна.Наибольшей держащей способностью обладают глинистые грунты. Однако при длительной стоянке возможно «засасывание» таким грунтом якоря и лежащей на грунте части якорной цепи, что создаст значительные затруднения при съемке с якоря. Поэтому наиболее благоприятными для якорной стоянки считаются грунты илистые, ил с песком, которые обладают удовлетворительной держащей способностью и в которых якоря сразу хорошо забирают. Песчаный грунт, гравий держат якоря хуже. Якоря в таких грунтах могут плавно ползти, что не позволяет сразу же обнаружить дрейф судна.Чрезвычайно нежелательна постановка на якорь на каменистом или ракушечном грунте. На таких грунтах держащая сила якоря будет равна только его массе и массе цепи, лежащей на грунте. Кроме того, на каменистом грунте якорь может попасть в расщелину, что приведет либо к потере якоря и части якорной цепи, либо в лучшем случае сделает съемку с якоря очень трудной и длительной. Пологое и ровное дно всегда лучше, чем с резко меняющимися глубинами.Место предполагаемой якорной стоянки должно быть внимательно изучено по лоции, правилам порта.При подходе к месту якорной стоянки необходимо заблаговременно перевести главный двигатель на работу в маневренном режиме, проверить работу машинного телеграфа и связь машинного отделения с мостиком, сверить показания судовых часов на мостике и в машинном отделении, предупредить вахту в машинном отделении о предполагаемом времени постановки судна на якорь.За 15—20 мин до подхода к месту якорной стоянки на свои места вызываются члены экипажа, которые по расписанию должны принимать участие в постановке судна на якорь.Непосредственно перед постановкой проверяется работа брашпиля на холостом ходу, положение якорных цепей в цепном ящике, снимаются крышки (клюз-саки) клюзов, ведущих в цепной ящик.После длительного морского перехода рекомендуется предварительно притравить брашпилем якорь до воды. В дальнейшем поступают в зависимости от глубины, на которой будет отдаваться якорь. При постановке на якорь на малых глубинах (до 25—30 м) после проверки работы брашпиля (притравливание якоря) зажимают ленточный стопор, отдают все, остальные стопоры и отсоединяют звездочки якорных цепей от мотора брашпиля. Если же глубина в месте якорной стоянки превышает указанную величину, звездочка якорной цепи отдаваемого якоря остается соединенной с брашпилем.При постановке на якорь в дневное время готовят к подъему черный шар, а в ночное — включение якорных огней.Безопасность якорной стоянки зависит от совокупности ряда факторов: состояния судна, характера грунта и в первую очередь гидрометеорологической обстановки.Под влиянием внешних факторов (ветер, течение) судно, стоящее на якоре, может развернуться на якорном канате или переместиться по окружности, описанной вокруг якоря радиусом RЯ = x + Lmaxгде x, горизонтальная проекция вытравленного якорного каната, м Lmax — максимальная длина судна, м.При предварительном определении радиуса якорной стоянки нужно учитывать, что может возникнуть необходимость потравить якорный канат на всю длину ℓЯ.Ц , а также предусматривать запас ∆ℓна случай дрейфа и маневрирования при съемке с якоря.

26. Под влиянием внешних факторов (ветер, течение) судно, стоящее на якоре, может развернуться на якорном канате или переместиться по окружности, описанной вокруг якоря радиусом RЯ = x + Lmax (8.1)где x, горизонтальная проекция вытравленного якорного каната, м Lmax — максимальная длина судна, м.

При предварительном определении радиуса якорной стоянки нужно учитывать, что может возникнуть необходимость потравить якорный канат на всю длину ℓЯ.Ц , а также предусматривать запас ∆ℓна случай дрейфа и маневрирования при съемке с якоря. Тогда: X = √ ℓ2Я.Ц – H2КЛ ; где HКЛ – возвышение клюза над грунтом, м

RЯ = √ ℓ2Я.Ц – H2КЛ + Lmax + ℓЯ.Ц ( 8.2)

Площадь круга, ограниченного радиусом RЯ, называют местом якорной стоянки судна. Оно должно располагаться в стороне от :створных линий, фарватеров, подводных кабелей и других судов. Наименьшая глубина здесь должна быть такой, чтобы во время отлива и при качке на волнении судно не могло коснуться грунта или :своего якоря, лежащего на грунте.

В общем случае безопасность якорной стоянки может быть описана двумя формулами:

  • Держащая сила якорного устройства должна быть равна или больше суммы внешних сил действующих на судно;

RЯУ ≥ ∑F

  • Минимальная глубина в месте якорной стоянки должна быть не менее

Hм ≥ 1.2 dmax + 0.7 hВ Где dmaxмаксимальная осадка судна; hВ - максимальная высоты волны в данном районе и данном сезоне:На глубина моря превышающих 2/3 ℓЯ.Ц постановка на якорь не целесообразна.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]