
- •ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ
- •«САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»
- •Введение
- •Обработка результатов физико-химических измерений
- •Погрешность измерений
- •Выражение результатов измерений и расчетов
- •Рис. 1. Пример построения графика и определения величины тангенса угла наклона прямолинейной зависимости.
- •Лабораторная работа № 1. Определение интегральной теплоты растворения соли и теплоты гидратообразования
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Рис. 2. Образец построения зависимости изменения температуры от времени.
- •Рис. 3. Пример графической обработки результатов эксперимента.
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 2. Определение теплоты диссоциации слабого электролита
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 3 Определение изменения энтальпии реакции нейтрализации
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 4. Определение константы диссоциации слабого электролита
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка экспериментальных данных
- •Рис. 4. Экспериментальная кривая кондуктометрического титрования.
- •Рис. 5. Обработка экспериментальной кривой титрования и определение точки эквивалентности.
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 5. Определение константы нестойкости
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 6. Кинетика окисления иодида калия персульфатом аммония
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 7. Исследование ионообменной адсорбции
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Обработка выходной кривой ионообменной адсорбции.
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 8. Молекулярная адсорбция на активированном угле
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Изотерма удельной адсорбции.
- •Линейная форма уравнения адсорбции Фрейндлиха. lgK = 0,97; 1/n = 1,04.
- •Содержание отчета по лабораторной работе
- •Лабораторная работа № 9. Определение порога коагуляции фотометрическим методом
- •Цель работы
- •Сущность работы
- •Оборудование и реактивы
- •Выполнение работы
- •Содержание протокола лабораторной работы
- •Обработка результатов эксперимента
- •Экспериментальная зависимость оптической плотности золя от объёма элемтролита
- •Пример графической обработки экспериментальных данных
- •Содержание отчета по лабораторной работе
- •Содержание
- •«САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»
- •Введение
- •1 Содержание разделов дисциплины
- •1.1 Общие сведения
- •1.2 Лекционный курс
- •Таблица 1 – Содержание лекционного курса
- •1.3 Лабораторный практикум
- •Таблица 2 - Общий план - график лабораторных работ и семинарских занятий
- •Таблица 3 – План-график лабораторных работ и семинарских занятий
- •Таблица 4 - Темы лабораторных работ
- •1.4 Семинарские занятия
- •Таблица 5 – Темы семинарских занятий
- •1.5 Домашние задания
- •Таблица 6 – Темы домашних заданий
- •2. Разминка
- •2.1 Краткие теоретические сведения
- •2.2 Примеры решения задач
- •2.3 Задачи для решения
- •3. Расчет термодинамических параметров химических реакций
- •3.1. Краткие теоретические сведения
- •3.2. Примеры решения задач
- •Пример 1. Вычислить тепловой эффект и изменение энергии Гиббса реакции
- •Пример 2. Вычислить изменение энергии Гиббса реакции
- •Пример3.Вычислитьизменение энергииГиббсапри 850 Kдля реакции
- •3.3. Задачи для решения
- •3.3.1. Вычислить тепловой эффект и изменение энергии Гиббса при 298 K для реакции в водном растворе
- •3.3.2. Вычислить энергию Гиббса реакции при заданной температуре
- •4. Расчет константы равновесия при заданной температуре
- •4.1. Краткие теоретические сведения
- •4.2. Примеры решения задач
- •4.2.1. Применение уравнения изобары
- •4.2.2. Метод Темкина-Шварцмана
- •Пример 5. Вычислить энергию Гиббса реакции 4NH3 (г)+ 5O2 (г) = 6H2O (г) + 4NO (г) при 850 K.
- •4.2.3. Метод приведенных энергий Гиббса
- •Пример 6. Вычислить энергию Гиббса реакции 4NH3 (г)+ 5O2 (г) = 6H2O (г) + 4NO (г) при 850 K.
- •4.3. Задачи для решения
- •5. Расчет состава равновесной газовой смеси
- •5.1. Краткие теоретические сведения
- •5.2. Примеры решения задач
- •Пример 7. Определить степень диссоциации иодоводорода на водород и иод
- •Пример 8. Вычислить состав равновесной смеси, образующейся при протекании реакции
- •5.3. Задачи для решения
- •5.3.1. Задачи на расчет степени превращения вещества
- •5.3.2. Задачи на расчет равновесного состава газовой смеси
- •6. Двухкомпонентные диаграммы состояния жидкость-твердое
- •6.1. Краткие теоретические сведения
- •6.1.1. Общая информация
- •6.1.2. Порядок рассмотрения диаграммы
- •6.1.3. Типовые диаграммы состояния
- •Рис. 16. Диаграмма состояния двухкомпонентной системы с одной точкой эвтектики.
- •Рис. 17. Диаграмма с полиморфным превращением компонента В
- •Рис. 18. Диаграмма с ограниченной растворимостью жидкостей
- •Рис. 19. Диаграммы состояния с твердыми растворами замещения.
- •Рис. 20. Диаграммы с твердыми растворами внедрения.
- •Рис. 21. Диаграмма с химическим соединением постоянного состава, которое плавится без разложения (конгруэнтно).
- •Рис. 22. Диаграмма с дальтонидом, который плавится без разложения
- •Рис. 23. Химическое соединение постоянного состава, которое плавится с разложением.
- •Рис. 24. Химическое соединение переменного состава, которое плавится с разложением.Обозначается на диаграммах как область состава δ, ограниченная линией перитектики.
- •2.7.2. Примеры решения задач
- •Пример 11.Прочесть диаграмму состояния системы «медь – магний».
- •Рис. 16. Диаграмма состояния медь-магний.
- •Рис. 17. Решение примера 1.
- •2.7.3. Задачи для решения
- •2.8. Трехкомпонентные диаграммы состояния жидкость-твердое
- •2.8.1. Краткие теоретические сведения
- •2.8.1.1. Общие сведения
- •Рис. 18. Определение состава системы по треугольнику Розебома.
- •Рис. 19. Применение правила рычага.
- •2.8.1.2. Порядок рассмотрения трехкомпонентной диаграммы состояния конденсированной системы
- •2.8.1.3. Некоторые типовые диаграммы состояния
- •Рис. 19. Диаграмма состояния трехкомпонентной конденсированной системы с одной тройной точкой эвтектики (а) и развертка к ней (б).
- •Рис. 21. Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся без разложения (а) и развертка по линии АС (б).
- •Рис. 22. Диаграмма состояния трехкомпонентной конденсированной системы с одним двойным химическим соединением, плавящимся с разложением
- •Рис. 23. Трехкомпонентная система содним тройным соединением, плавящимся без разложения.
- •2.8.2. Примеры решения задач
- •Пример 12.Прочесть диаграмму состояния системы.
- •Рис. 24. Трехкомпонентная диаграмма состояния
- •Рис. 25. Диаграмма состояния с обозначенными полями и значимыми точками.
- •Рис. 26. Развертки к сторонам диаграммы: сторонаАС (а) сторонаАВ (б) и сторонаВС (в).
- •Рис. 27. Направления падения температуры.
- •Рис. 28. Пути кристаллизации фигуративной точки, пояснения к заполнению таблицы и кривая охлаждения.
- •2.8.3. Задачи для решения
- •Содержание

vk.com/club152685050 | vk.com/id446425943
=Через точку середины провести перпендикуляр к оси абсцисс.
=Продлить линии тренда начального и конечного периодов до пересечения с
перпендикуляром – получим значение изменения температуры Т (см. рис. 4).
2,85 |
|
|
Т, |
о |
Б |
|
||
2,8 |
|
|
2,75 |
|
|
2,7 |
|
|
2,65
2,6
2,55
Т
|
|
|
|
|
|
|
|
t , с |
0 |
100 |
200 |
300 |
400 |
500 |
600 |
700 |
800 |
Рис. 3. Пример графической обработки результатов эксперимента.
4. Рассчитать теплоемкость калориметрической установки по уравнению:
Сcal = Cр-рmp-p + СHgVHg + Cстmст, Дж/К,
где Cр-р – удельная теплоемкость раствора, 4,18 Дж/г К; mp-p – масса раствора во внутреннем стакане, г; СHg – объемная теплоемкость ртути и стекла, 1,92 Дж/см3 К, VHg – объем баллона термометра, содержащего ртуть, мл; Cст – удельная теплоемкость стекла, 0,79 дж/г К; mст – общая масса стеклянных частей калориметрической установки, г.
5. Вычислить интегральную теплоту растворения безводной соли и кристаллогидрата по уравнению:
|
|
H |
C |
cal |
T |
|
|
|
|
|
|
|
solv |
|
n |
|
|
|
|
|
|
||
|
|
|
|
соли |
, Дж/моль,
где nсоли – количество вещества соли (безводной или кристаллогидрата), моль. 6. Вычислить тепловой эффект процесса гидратации по уравнению:
hydr H solvH MeSO |
4 |
solvH MeSO |
nH |
O . |
|
4 |
2 |
|
7. Оценить относительную инструментальную ошибку:
HH
|
|
С |
|
2 |
|
T |
2 |
|
m |
|
2 |
|
|
|
|
||||||||||
|
|
|
|
|||||||||
|
cal |
|
2 |
|
|
|
2 |
NaOH |
|
|||
|
|
|
|
|
|
|
|
|||||
|
|
С |
|
|
|
T |
|
|
|
m |
|
|
|
|
|
|
|
|
|
|
|||||
|
cal |
|
|
|
NaOH |
|
.
Относительную погрешность расчетного определения теплоемкости системы |
Сcal |
обычно принимают равной 3 %; погрешность определения температуры определяется ценой деления термометра Бекмана (0,005°Б), массы – технической характеристикой весов (0,01 г).
8. Рассчитать абсолютную погрешность измерения теплового эффекта. Ответ записать по форме: Н Н Н .
СОДЕРЖАНИЕ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ
1.Название работы.
2.Цель работы.
3.Ход эксперимента.
4.Экспериментальные данные (см. протокол к лабораторной работе).
5.Обработка экспериментальных данных.
6.Вывод.
8