
- •Содержание
- •1 Предмет, цели и задачи идентификации, области применения
- •2 Проблемы точности, критерии и условия
- •6.2 Методика идентификации моделей объектов
- •6.3 Методика идентификации моделей объектов
- •6.4 Методика идентификации моделей объектов
- •8 Идентификация параметров объекта во временной и
- •10 Применение идентификации в системах
- •1 Предмет, цели и задачи идентификации, области применения
- •1.1 Сущность идентификации, ее цели и задачи
- •1.2 Проблемы выбора модели объекта идентификации
- •1.3 Области применения идентификации
- •2 Проблемы точности, критерии и условия идентификации
- •2.1 Анализ ошибок, возникающих в системе идентификации
- •2.2 Критерии идентификации
- •2.3 Управляемость, наблюдаемость и идентифицируемость объекта
- •3 Основные типы моделей в теории идентификации
- •3.1 Модели для описания непрерывных систем
- •3.2 Модели для описания дискретных систем
- •3.3 Основные типы сигналов
- •4 Методы идентификации моделей объектов типовых звеньев по временным и частотным характеристикам
- •4.1. Математическая обработка динамическиххарактеристик объектов управления
- •4.2 Идентификация параметров модели апериодического звена 1-го порядка по временным характеристикам
- •4.3 Идентификация моделей в виде апериодических звеньев II-го порядка
- •4.4 Идентификация моделей в виде передаточной функции колебательного звена II-го порядка по временным характеристикам
- •4.5 Идентификация моделей в виде типовых динамическихзвеньев по частотным характеристикам
- •5Методика идентификации моделей в виде передаточной функции по кривым разгона на основе метода площадей (метод симою)
- •6 Методика идентификации моделей объектов III-го порядка по их временным характеристикам
- •6.1 Типы моделей
- •6.2 Методика идентификации моделей объектов III-го порядка первого типа по их временным характеристикам
- •6.3 Методика идентификации моделей объектов III-го порядка второго типа по их временным характеристикам
- •6.4 Методика идентификации моделей объектов III-го порядка третьего типа по их временным характеристикам
- •7 Анализ динамики и параметров идентификации с учетом объекта
- •7.1 Модель исполнительной части следящей системы
- •7.2 Анализ жесткого объекта при изменении момента инерции нагрузки
- •7.3 Анализ объекта с упругой механической передачей
- •8 Идентификация параметров объекта во временной и частотной области
- •8.1 Обоснование идентифицируемости объекта
- •8.2 Идентификация параметров объекта по переходной функции (методика Орманса)
- •8.3Оценка коэффициентов передаточной функции с помощью гармонических входных воздействий
- •8.4 Идентификация параметров объекта с помощью квадрата модуля частотной характеристики и метода наименьших квадратов
- •8.5Идентификация параметров объекта с применением квадрата модуля обратной частотной характеристики
- •9 Статистические методы анализа, идентификации и моделирования
- •9.1 Условия применения методов статистического анализа
- •9.2 Спектральный анализ входных периодических сигналов
- •9.3 Особенности спектрального анализа методом бпф.
- •9.4 Спектральный анализ сигналов в виде непериодической функции
- •9.5 Статистический анализ с применением сигналов белого шума
- •9.6 Статистический анализ реализации случайного процесса на выходе системы
- •9.7 Статистические методы построения модели и идентификации параметров
- •10 Применение идентификации в системах адаптивного управления
- •10.1 Основные схемы контуров адаптации и функции систем идентификации
- •10.2 Определение параметров эталонной модели и передаточной функции устройства адаптации.
- •10.3 Разработка алгоритма и структурной схемы адаптивной настройки регулятора
- •Литература
- •44/2010. Підп. До друку . Формат 60 х 84/8.
- •84313, М. Краматорськ, вул. Шкадінова, 72.
3 Основные типы моделей в теории идентификации
Реальные объекты управления представляют собой совокупность отдельных элементов и блоков, соединенных между собой посредством связей. Поэтому в практике, гораздо удобнее бывает представлять математическую модель всей системы, как совокупность относительно простых математических моделей отдельных элементов и блоков объекта, т.е. структурированную модель. Такая форма математического описания отражает не только физические, но и технические принципы построения системы управления и позволяет исследовать процессы происходящие не только в системе в целом, но и процессы в отдельных ее элементах.
Структурированные модели, учитывающие техническую организацию систем управления, создаются на основе следующих допущений:
1. Все элементы системы являются простейшими звеньями, т.е. имеют один вход и один выход. Если звено характеризуется несколькими обобщенными координатами, то в качестве выходной величины выбирается та координата, которая является выходной или регулируемой величиной звена.
2. Все звенья, из которых состоит система, является детектирующими. В детектирующем звене выходная величина зависит только от входной. Если выходная величина звена оказывает влияние на входную, то звено называется недетектирующим.
В курсе теории идентификации рассматриваются модели, которые используются при анализе и синтезе различных САУ, а именно модели для описания следующих систем:
–непрерывных;
–дискретных;
–нелинейных;
– стохастических.
3.1 Модели для описания непрерывных систем
Допущения о том, что в состав системы управления должны входить только детектирующие звенья не сужает область применения структурированных моделей, так как недетектирующее звено может рассматривать как совокупность детектирующих звеньев охватываемых обратной связью.
Таким образом, структурированная модель системы управления разбивается на ряд взаимосвязанных математических моделей отдельных звеньев. Тогда, последовательно исключая все внутренние переменные, являющиеся входными или выходными сигналами звеньев, можно найти дифференциальное уравнение описывающее взаимосвязь входной и выходной величины системы в виде линейного дифференциального уравнения:
, (3.1)
где a0, a1,…, an; b0, b1, …, bn- постоянные коэффициенты; n – порядок системы.
Для реальных физически реализуемых систем управления m < n . Подвергая (3.1) преобразованию Лапласа при нулевых начальных условиях получим алгебраическое уравнение, связывающее изображения по Лапласу от входной X(p) и выходной Y(p) величины объекта
. (3.2)
Последнее уравнение можно представить в виде передаточной функции (3.3), или структурной математической модели приведенной на рис. 3.1
,
n≥m (3.3)
Рисунок 3.1 - Структурное представление математической модели непрерывной системы
Передаточной функцией системы называется отношение выходнойвеличины к входной, преобразованных по Лапласу при нулевых начальныхусловиях и возмущениях.Зная передаточную функцию системы или звена можно легко получитьдифференциальное уравнение в форме (3.1), справедливо также и обратноеутверждение.
Введение векторных переменных при рассмотрении многомерныхобъектов позволяет для линейных систем использовать привычный аппаратпередаточных функций и структурных схем, однако понятие передаточнойфункции значительно расширяется.
Наиболее употребительной моделью динамических объектов являются дифференциальные уравнения. Будем рассматривать только объекты с сосредоточенными параметрами, которые описываются обыкновенными дифференциальными уравнениями. Порядок системы дифференциальных уравнений, описывающей модель объекта, непосредственно не определяется количеством входов и выходов, а зависит от операторов, преобразующих входные сигналы в выходные.
Для линеаризованного дифференциального уравнения (3.1) с учетом воздействия среды можно представить его в векторной форме:
, (3.4)
где A(t); B(t); E(t) – матрицы преобразования, элементы которых в общем случае являются функциями времени.
Элементы xi в уравнении (2.3) называются переменными состояния объекта или фазовыми координатами. Переменные состояния x (фазовые координаты) образуют вектор состояния, переменные управления u и возмущения f образуют векторы управления и возмущения. Множество этих векторов составляет пространство состояний (фазовое пространство) X, пространство управлений U и возмущений F.
Во многих физических объектах регулируются, измеряются и передаются по информационным каналам не значения вектора состояния x, а другие значения – функции составляющих вектора фазовых координат, называемые управляемыми или выходными величинами. Обозначим измеряемые величины через y1(t), y2(t),..., ys(t), причем s ≤ n. Тогда уравнение измерения, связывающее регулируемые и фазовые координаты объекта примет вид
.
(3.5)
Для линейного объекта это соотношение линейное:
.
(3.6)
МатрицаС(t) называется матрицей измерения. Она показывает, какизменяются значения вектора состояний при измерении. При измерениях,описываемых выражениями (3.5) и (3.6), вектором выходных сигналов (илипросто вектором выхода) является вектор y(t). Отметим, что между векторамивхода, выхода и состояния существует принципиальное различие. Если всесоставляющие вектора входа и вектора выхода являются вполне конкретнымифизическими величинами, то элементами вектора состояния могут бытьнекоторые абстрактные переменные, физическая природа которых не всегдаопределена.
Векторно-матричная запись модели линейного динамического объекта сучетом уравнения измерения принимает вид:
.
(3.7)
Если матрицы A(t), B(t) и C(t) не зависят от времени, то объект называется объектом с постоянными коэффициентами, или стационарным, объектов.В противном случае объект будет нестационарным.
При наличии погрешностей при измерении, выходные (регулируемые)сигналы задаются линеаризованным матричным уравнением:
, (3.8)
где y(t) – вектор регулируемых (измеряемых) величин; C(t) – матрица связи вектора измерений с вектором состояний; v(t) – вектор ошибок измерений (помехи).
Структура линейной непрерывной системы, реализующая уравнения (3.7) и (3.8) приведена на рис. 3.2.
Рисунок 3.2 – Структурная схема математической модели линейной непрерывной системы
Данная структура соответствует математической модели объекта построенной в пространстве состояний его входных x(t), u(t), выходных y(t) и внутренних, или фазовых координат x(t).