
- •Тема 1. Введение в математический анализ 9
- •Тема 2. Дифференциальное исчисление функции одной переменной 34
- •Тема 3. Интегральное исчисление 84
- •Тема 4. Ряды 144
- •Требования к результатам освоения дисциплины
- •Содержание дисциплины
- •Тема 1. Введение в математический анализ.
- •Тема 2. Дифференциальное исчисление функций одной переменной.
- •Тема 3. Интегральное исчисление.
- •Тема 4. Ряды.
- •Формы контроля
- •Литература
- •Курс лекций тема 1. Введение в математический анализ
- •1.1. Числовая последовательность
- •1.2. Ограниченные и неограниченные последовательности
- •1.3. Предел
- •1.4. Монотонные последовательности
- •1.5. Число е
- •1.6. Связь натурального и десятичного логарифмов
- •1.7. Предел функции в точке. Односторонние пределы
- •1.8. Предел функции при стремлении аргумента к бесконечности
- •1.9. Основные теоремы о пределах
- •1.10. Ограниченные функции
- •1.11. Бесконечно малые функции
- •1.12. Бесконечно большие функции и их связь с бесконечно малыми
- •1.13. Сравнение бесконечно малых функций
- •1.14. Свойства эквивалентных бесконечно малых функций
- •1.15. Некоторые замечательные пределы
- •1.16. Непрерывность функции в точке
- •1.17. Свойства непрерывных функций
- •1.18. Непрерывность некоторых элементарных функций
- •1.19. Точки разрыва и их классификация
- •1.20. Непрерывность функции на интервале и на отрезке
- •1.21. Свойства функций, непрерывных на отрезке
- •1.22. Комплексные числа
- •1.23. Тригонометрическая форма числа
- •1.24. Действия с комплексными числами
- •1.25. Показательная форма комплексного числа
- •Тема 2. Дифференциальное исчисление функции одной переменной
- •2.1. Производная функции, ее геометрический и физический смысл
- •2.2. Односторонние производные функции в точке
- •2.7. Производная показательно-степенной функции
- •2.8. Производная обратных функций
- •2.9. Дифференциал функции
- •2.10. Геометрический смысл дифференциала
- •2.11. Свойства дифференциала
- •2.12. Дифференциал сложной функции. Инвариантная форма записи дифференциала
- •2.13. Формула Тейлора. Формула Лагранжа. Формула Маклорена Тейлор (1685-1731) – английский математик
- •Колин Маклорен (1698-1746) шотландский математик.
- •2.14. Представление некоторых элементарных функций по формуле Тейлора. Бином Ньютона
- •2.15. Применение дифференциала к приближенным вычислениям
- •2.16. Теорема Ролля
- •2.17. Теорема Лагранжа
- •2.18. Теорема Коши
- •2.19. Раскрытие неопределенностей. Правило Лопиталя
- •2.20. Производные и дифференциалы высших порядков
- •2.21. Общие правила нахождения высших производных
- •2.22. Возрастание и убывание функций
- •2.23. Точки экстремума. Критические точки. Достаточные условия экстремума
- •2.24. Исследование функции на экстремум с помощью производных высших порядков
- •2.25. Выпуклость и вогнутость кривой. Точки перегиба
- •2.26. Асимптоты
- •Вертикальные асимптоты
- •Наклонные асимптоты
- •2.27. Схема исследования функций
- •2.28. Векторная функция скалярного аргумента. Уравнение касательной к кривой
- •2.29. Свойства производной векторной функции скалярного аргумента
- •2.30. Уравнение нормальной плоскости
- •2.31. Параметрическое задание функции
- •2.32. Уравнения некоторых типов кривых в параметрической форме о кружность
- •Циклоида
- •Астроида
- •2.33. Производная функции, заданной параметрически
- •2.34. Кривизна плоской кривой
- •Свойства эволюты
- •2.35. Кривизна пространственной кривой
- •О формулах Френе
- •3.4. Методы интегрирования. Интегрирование различных функций
- •Непосредственное интегрирование
- •Способ подстановки (замены переменных)
- •Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций
- •Интегрирование некоторых иррациональных функций
- •1 Способ. Тригонометрическая подстановка.
- •3 Способ. Метод неопределенных коэффициентов.
- •Несколько примеров интегралов, не выражающихся через элементарные функции
- •3.5. Определенный интеграл и его свойства
- •Свойства определенного интеграла
- •3.6. Приемы и методы вычисления определенного интеграла
- •Замена переменных
- •Интегрирование по частям
- •Приближенное вычисление определенного интеграла
- •Формула прямоугольников
- •Формула трапеций
- •Формула парабол (формула Симпсона или квадратурная формула) (Томас Симпсон (1710-1761)- английский математик)
- •3.7. Несобственные интегралы
- •3.8. Интеграл от разрывной функции
- •3.9. Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Нахождение площади криволинейного сектора
- •Вычисление длины дуги кривой
- •3.8. Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений.
- •Объем тел вращения
- •3.9. Площадь поверхности тела вращения
- •3.10. Функции нескольких переменных
- •3.11. Производные и дифференциалы функций нескольких переменных
- •3.12. Полное приращение и полный дифференциал
- •3.12. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности
- •3.13. Приближенные вычисления с помощью полного дифференциала
- •3.14. Частные производные высших порядков
- •3.15. Экстремум функции нескольких переменных
- •Условный экстремум
- •3.16. Производная по направлению
- •3.17. Градиент
- •Связь градиента с производной по направлению
- •3.18. Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Замена переменных в двойном интеграле
- •Двойной интеграл в полярных координатах
- •3.19. Тройной интеграл
- •Замена переменных в тройном интеграле
- •Цилиндрическая система координат
- •Сферическая система координат
- •3.20. Геометрические и физические приложения кратных интегралов
- •3) Вычисление объемов тел.
- •Тема 4. Ряды
- •4.1. Основные определения
- •4.2. Свойства рядов
- •4.3. Критерий Коши
- •4.4. Ряды с неотрицательными членами
- •4.5. Признак сравнения рядов с неотрицательными членами
- •4.6. Признак Даламбера
- •4.7. Предельный признак Даламбера
- •4.8. Признак Коши (радикальный признак)
- •4.9. Интегральный признак Коши
- •4.10. Знакопеременные ряды. Знакочередующиеся ряды
- •4.11. Признак Лейбница
- •4.12. Абсолютная и условная сходимость рядов
- •4.13. Признаки Даламбера и Коши для знакопеременных рядов
- •4.14. Свойства абсолютно сходящихся рядов
- •4.15. Функциональные последовательности
- •4.16. Функциональные ряды
- •4.17. Критерий Коши равномерной сходимости ряда. Признак равномерной сходимости Вейерштрасса
- •4.18. Свойства равномерно сходящихся рядов
- •4.19. Степенные ряды
- •4.20. Теоремы Абеля
- •4.21. Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •4.22. Разложение функций в степенные ряды
- •Если применить к той же функции формулу Маклорена
- •4.23. Решение дифференциальных уравнений с помощью степенных рядов
- •4.24. Ряды Фурье
- •Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Ряд Фурье по ортогональной системе функций
- •4.25. Интеграл Фурье
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •4.26. Преобразование Фурье
- •4.27. Элементы теории функций комплексного переменного
- •4.28. Свойства функций комплексного переменного
- •4.29. Основные трансцендентные функции
- •4.30. Производная функций комплексного переменного
- •4.31. Условия Коши – Римана
- •4.32. Интегрирование функций комплексной переменной
- •4.33. Теорема Коши. Интегральная формула Коши
- •Интегральная формула Коши
- •4.34. Ряды Тейлора и Лорана. Изолированные особые точки
- •4.35. Теорема о вычетах. Вычисление интегралов с помощью вычетов
- •Образцы решения типовых заданий
- •Блок контроля контрольная работа
- •Варианты заданий
- •Экзаменационная работа
- •Экзаменационные вопросы
- •Экзаменационные практические задания
- •Список рекомендуемой литературы
1.5. Число е
Рассмотрим
последовательность {xn}
=
.
Если последовательность {xn} монотонная и ограниченная, то она имеет конечный предел.
По формуле бинома Ньютона:
или,
что то же самое
Покажем, что последовательность {xn} – возрастающая. Действительно, запишем выражение xn+1 и сравним его с выражением xn:
Каждое
слагаемое в выражении xn+1
больше соответствующего значения xn,
и, кроме того, у xn+1
добавляется еще одно положительное
слагаемое. Таким образом, последовательность
{xn}
возрастающая.
Докажем теперь, что при любом n ее члены не превосходят трех: xn < 3.
Итак,
последовательность
-
монотонно возрастающая и ограниченная
сверху, т.е. имеет конечный предел. Этот
предел принято обозначать буквой е.
Из неравенства
следует, что е 3.
Отбрасывая в равенстве для {xn}
все члены, начиная с четвертого, имеем:
переходя к пределу, получаем
Таким образом, число е заключено между числами 2,5 и 3. Если взять большее количество членов ряда, то можно получить более точную оценку значения числа е.
Можно показать, что число е иррациональное и его значение равно 2,71828…
Аналогично
можно показать, что
,
расширив требования к х до любого
действительного числа:
Предположим:
Найдем
Число е является основанием натурального логарифма.
Выше представлен график функции y = lnx.
1.6. Связь натурального и десятичного логарифмов
Пусть х = 10у, тогда lnx = ln10y , следовательно lnx = yln10
у =
,
где М = 1/ln10
0,43429…- модуль перехода.
1.7. Предел функции в точке. Односторонние пределы
y f(x)
A +
A
A -
0 a - a a + x
Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)
Определение. Число А называется пределом функции f(x) при ха, если для любого >0 существует такое число >0, что для всех х таких, что
0 < x - a <
верно неравенство f(x) - A< .
То же определение может быть записано в другом виде:
Если а - < x < a + , x a, то верно неравенство А - < f(x) < A + .
Запись предела
функции в точке:
Определение. Если f(x)
A1
при х
а только при x < a,
то
- называется пределом функции f(x)
в точке х = а слева, а если f(x)
A2
при х
а только при x > a,
то
называется пределом функции f(x)
в точке х = а справа.
у
f(x)
А2
А1
0 a x
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.
Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).
1.8. Предел функции при стремлении аргумента к бесконечности
Определение. Число А называется пределом функции f(x) при х, если для любого числа >0 существует такое число М>0, что для всех х, х>M выполняется неравенство
При этом предполагается, что функция f(x) определена в окрестности бесконечности.
Записывают:
Графически можно представить:
y y
A A
0 0
x x
y y
A A
0 0
x x
Аналогично
можно определить пределы
для любого х>M и
для любого х<M.