
- •Тема 1. Введение в математический анализ 9
- •Тема 2. Дифференциальное исчисление функции одной переменной 34
- •Тема 3. Интегральное исчисление 84
- •Тема 4. Ряды 144
- •Требования к результатам освоения дисциплины
- •Содержание дисциплины
- •Тема 1. Введение в математический анализ.
- •Тема 2. Дифференциальное исчисление функций одной переменной.
- •Тема 3. Интегральное исчисление.
- •Тема 4. Ряды.
- •Формы контроля
- •Литература
- •Курс лекций тема 1. Введение в математический анализ
- •1.1. Числовая последовательность
- •1.2. Ограниченные и неограниченные последовательности
- •1.3. Предел
- •1.4. Монотонные последовательности
- •1.5. Число е
- •1.6. Связь натурального и десятичного логарифмов
- •1.7. Предел функции в точке. Односторонние пределы
- •1.8. Предел функции при стремлении аргумента к бесконечности
- •1.9. Основные теоремы о пределах
- •1.10. Ограниченные функции
- •1.11. Бесконечно малые функции
- •1.12. Бесконечно большие функции и их связь с бесконечно малыми
- •1.13. Сравнение бесконечно малых функций
- •1.14. Свойства эквивалентных бесконечно малых функций
- •1.15. Некоторые замечательные пределы
- •1.16. Непрерывность функции в точке
- •1.17. Свойства непрерывных функций
- •1.18. Непрерывность некоторых элементарных функций
- •1.19. Точки разрыва и их классификация
- •1.20. Непрерывность функции на интервале и на отрезке
- •1.21. Свойства функций, непрерывных на отрезке
- •1.22. Комплексные числа
- •1.23. Тригонометрическая форма числа
- •1.24. Действия с комплексными числами
- •1.25. Показательная форма комплексного числа
- •Тема 2. Дифференциальное исчисление функции одной переменной
- •2.1. Производная функции, ее геометрический и физический смысл
- •2.2. Односторонние производные функции в точке
- •2.7. Производная показательно-степенной функции
- •2.8. Производная обратных функций
- •2.9. Дифференциал функции
- •2.10. Геометрический смысл дифференциала
- •2.11. Свойства дифференциала
- •2.12. Дифференциал сложной функции. Инвариантная форма записи дифференциала
- •2.13. Формула Тейлора. Формула Лагранжа. Формула Маклорена Тейлор (1685-1731) – английский математик
- •Колин Маклорен (1698-1746) шотландский математик.
- •2.14. Представление некоторых элементарных функций по формуле Тейлора. Бином Ньютона
- •2.15. Применение дифференциала к приближенным вычислениям
- •2.16. Теорема Ролля
- •2.17. Теорема Лагранжа
- •2.18. Теорема Коши
- •2.19. Раскрытие неопределенностей. Правило Лопиталя
- •2.20. Производные и дифференциалы высших порядков
- •2.21. Общие правила нахождения высших производных
- •2.22. Возрастание и убывание функций
- •2.23. Точки экстремума. Критические точки. Достаточные условия экстремума
- •2.24. Исследование функции на экстремум с помощью производных высших порядков
- •2.25. Выпуклость и вогнутость кривой. Точки перегиба
- •2.26. Асимптоты
- •Вертикальные асимптоты
- •Наклонные асимптоты
- •2.27. Схема исследования функций
- •2.28. Векторная функция скалярного аргумента. Уравнение касательной к кривой
- •2.29. Свойства производной векторной функции скалярного аргумента
- •2.30. Уравнение нормальной плоскости
- •2.31. Параметрическое задание функции
- •2.32. Уравнения некоторых типов кривых в параметрической форме о кружность
- •Циклоида
- •Астроида
- •2.33. Производная функции, заданной параметрически
- •2.34. Кривизна плоской кривой
- •Свойства эволюты
- •2.35. Кривизна пространственной кривой
- •О формулах Френе
- •3.4. Методы интегрирования. Интегрирование различных функций
- •Непосредственное интегрирование
- •Способ подстановки (замены переменных)
- •Интегрирование по частям
- •Интегрирование элементарных дробей
- •Интегрирование рациональных функций. Интегрирование рациональных дробей.
- •Интегрирование некоторых тригонометрических функций
- •Интегрирование некоторых иррациональных функций
- •1 Способ. Тригонометрическая подстановка.
- •3 Способ. Метод неопределенных коэффициентов.
- •Несколько примеров интегралов, не выражающихся через элементарные функции
- •3.5. Определенный интеграл и его свойства
- •Свойства определенного интеграла
- •3.6. Приемы и методы вычисления определенного интеграла
- •Замена переменных
- •Интегрирование по частям
- •Приближенное вычисление определенного интеграла
- •Формула прямоугольников
- •Формула трапеций
- •Формула парабол (формула Симпсона или квадратурная формула) (Томас Симпсон (1710-1761)- английский математик)
- •3.7. Несобственные интегралы
- •3.8. Интеграл от разрывной функции
- •3.9. Геометрические приложения определенного интеграла Вычисление площадей плоских фигур
- •Нахождение площади криволинейного сектора
- •Вычисление длины дуги кривой
- •3.8. Вычисление объемов тел Вычисление объема тела по известным площадям его параллельных сечений.
- •Объем тел вращения
- •3.9. Площадь поверхности тела вращения
- •3.10. Функции нескольких переменных
- •3.11. Производные и дифференциалы функций нескольких переменных
- •3.12. Полное приращение и полный дифференциал
- •3.12. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности
- •3.13. Приближенные вычисления с помощью полного дифференциала
- •3.14. Частные производные высших порядков
- •3.15. Экстремум функции нескольких переменных
- •Условный экстремум
- •3.16. Производная по направлению
- •3.17. Градиент
- •Связь градиента с производной по направлению
- •3.18. Двойные интегралы
- •Условия существования двойного интеграла
- •Свойства двойного интеграла
- •Вычисление двойного интеграла
- •Замена переменных в двойном интеграле
- •Двойной интеграл в полярных координатах
- •3.19. Тройной интеграл
- •Замена переменных в тройном интеграле
- •Цилиндрическая система координат
- •Сферическая система координат
- •3.20. Геометрические и физические приложения кратных интегралов
- •3) Вычисление объемов тел.
- •Тема 4. Ряды
- •4.1. Основные определения
- •4.2. Свойства рядов
- •4.3. Критерий Коши
- •4.4. Ряды с неотрицательными членами
- •4.5. Признак сравнения рядов с неотрицательными членами
- •4.6. Признак Даламбера
- •4.7. Предельный признак Даламбера
- •4.8. Признак Коши (радикальный признак)
- •4.9. Интегральный признак Коши
- •4.10. Знакопеременные ряды. Знакочередующиеся ряды
- •4.11. Признак Лейбница
- •4.12. Абсолютная и условная сходимость рядов
- •4.13. Признаки Даламбера и Коши для знакопеременных рядов
- •4.14. Свойства абсолютно сходящихся рядов
- •4.15. Функциональные последовательности
- •4.16. Функциональные ряды
- •4.17. Критерий Коши равномерной сходимости ряда. Признак равномерной сходимости Вейерштрасса
- •4.18. Свойства равномерно сходящихся рядов
- •4.19. Степенные ряды
- •4.20. Теоремы Абеля
- •4.21. Действия со степенными рядами
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •4.22. Разложение функций в степенные ряды
- •Если применить к той же функции формулу Маклорена
- •4.23. Решение дифференциальных уравнений с помощью степенных рядов
- •4.24. Ряды Фурье
- •Тригонометрический ряд
- •Достаточные признаки разложимости в ряд Фурье
- •Разложение в ряд Фурье непериодической функции.
- •Ряд Фурье для четных и нечетных функций
- •Ряды Фурье для функций любого периода
- •Ряд Фурье по ортогональной системе функций
- •4.25. Интеграл Фурье
- •Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу
- •4.26. Преобразование Фурье
- •4.27. Элементы теории функций комплексного переменного
- •4.28. Свойства функций комплексного переменного
- •4.29. Основные трансцендентные функции
- •4.30. Производная функций комплексного переменного
- •4.31. Условия Коши – Римана
- •4.32. Интегрирование функций комплексной переменной
- •4.33. Теорема Коши. Интегральная формула Коши
- •Интегральная формула Коши
- •4.34. Ряды Тейлора и Лорана. Изолированные особые точки
- •4.35. Теорема о вычетах. Вычисление интегралов с помощью вычетов
- •Образцы решения типовых заданий
- •Блок контроля контрольная работа
- •Варианты заданий
- •Экзаменационная работа
- •Экзаменационные вопросы
- •Экзаменационные практические задания
- •Список рекомендуемой литературы
1.21. Свойства функций, непрерывных на отрезке
Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M f(x) M.
Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0.
Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.
Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем
m f(x) M
Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).
Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.
Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.
Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.
Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.
Т.е. если sign(f(a)) sign(f(b)), то х0: f(x0) = 0.
Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого >0 существует >0 такое, что для любых точек х1[a,b] и x2[a,b] таких, что
х2 – х1<
верно неравенство f(x2) – f(x1) <
Отличие равномерной непрерывности от “обычной” в том, что для любого существует свое , не зависящее от х, а при “обычной” непрерывности зависит от и х.
Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.
(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)
Пример.
Функция непрерывна на интервале (0, а), но не является на нем равномерно непрерывной, т.к. существует такое число >0 такое, что существуют значения х1 и х2 такие, чтоf(x1) – f(x2)>, - любое число при условии, что х1 и х2 близки к нулю.
Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.
Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.
в точке х = -1 функция непрерывна в точке х = 1 точка разрыва 1 – го рода
у
3
2
-4 -1 0 1 х
Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть.
в точке х = 0 функция непрерывна в точке х = 1 точка разрыва 1 – го рода
у
2
1
- -/2 0 1 x