
- •Методичні вказівки
- •Рекомендована література
- •Лабораторна робота № 1 визначення твердості металів
- •1.1. Теоретичні відомості
- •1.1.1. Визначення твердості методом Брінелля
- •Значення твердості на практиці визначають за довідковою таблицею.
- •1.1.2. Визначення твердості за методом Роквелла
- •Технічні характеристики преса тк-2
- •1.2. Порядок виконання роботи
- •Протокол результатів вимірювань за Брінеллем
- •Протокол результатів вимірювань за Роквеллом
- •Лабораторна робота № 2 побудова діаграми стану двохкомпонентних сплавів
- •2.1. Теоретичні відомості
- •2.2. Порядок виконання роботи
- •Лабораторна робота № 3 Макроскопічний метод дослідження металів
- •3.1. Теоретичні відомості
- •3.1.2. Зовнішній огляд
- •3.1.3. Вивчення макрошліфів.
- •3.1.4. Вивчення зламів
- •4.1.1. Дослідження мікрошліфів.
- •4.2. Порядок виконання роботи
- •Лабораторна робота № 5 мікроаналіз вуглецевих сталей і чавунів
- •5.1. Теоретичні відомості
- •5.1.1. Класифікація вуглецевих сталей
- •5.1.2. Маркування вуглецевих сталей
- •5.1.3. Класифікація і маркування чавунів
- •5.2. Порядок виконання роботи
- •Результати дослідження мікроструктури вуглецевих сталей
- •Результати дослідження мікроструктури чавунів
- •Лабораторна робота №6 вплив термічної обробки на структуру і властивості вуглецевих сталей
- •6.1. Теоретичні відомості
- •6.2. Порядок роботи
- •Протокол досліджень
- •Лабораторна робота №7 термічна обробка легованих сталей
- •7.1. Теоретичні відомості
- •7.1.1. Класифікація легованих сталей
- •7.1.2. Маркування легованих сталей
- •7.2. Порядок виконання роботи.
- •8.2. Порядок виконання роботи
- •Протокол досліджень
2.1. Теоретичні відомості
У техніці широко застосовуються сплави, які мають більший комплекс механічних, фізико-хімічних, експлуатаційних і технологічних властивостей ніж чисті метали. Сплави – це з’єднання двох, трьох і більше металів або металів і неметалів. Речовини, які входять до складу сплаву, називаються компонентами. В процесі кристалізації компоненти, взаємодіючи між собою, утворюють фази - однорідні за хімічним складом частини сплаву, які мають поверхні поділу, при переході через які властивості фаз змінюються стрибкоподібно. Сплави можуть бути одно- і багатофазними.
Основними фазами в сплавах можуть бути чисті компоненти, тверді розчини і хімічні сполуки. Чисті компоненти в сплавах виділяються тоді, коли атоми компонентів не взаємодіють і взаємно відштовхуються. У процесі кристалізації утворюється механічна суміш вихідних компонентів. Тверді розчини утворюються на основі чистих компонентів або хімічних сполук. Атоми другого компонента (розчинного) розташовуються в кристалічній гратці розчинника. За характером розташування атомів розчинного компонента розрізняють тверді розчини заміщення (атоми розчинного компонента розташовуються у вузлах кристалічної гратки розчинника) і тверді розчини проникнення (атоми розчинного компонента розташовуються у міжвузлових проміжках кристалічної гратки). Хімічні сполуки утворюються при взаємодії атомів компонентів. Основними видами хімічних сполук у металевих сплавах є фази впровадження і електронні з'єднання.
Процеси, які відбуваються у металах і сплавах при фазових перетвореннях, підпорядковані загальному закону рівноваги - правилу фаз Гіббса, яке виражає залежність між числом ступенів свободи, числом компонентів і фаз в умовах рівноваги:
С= К - Ф + 1 (2.1)
де С - число ступенів свободи (кількість незалежних змінних, зміна яких не призводить до зміни стану рівноваги системи); К - число компонентів, які входять до складу сплаву; Ф - число фаз, що знаходяться в рівновазі; 1 - число зовнішніх чинників (температура).
Фазовий склад сплавів не постійний - він змінюється в залежності від температури і концентрації. Графічне зображення зміни фазового складу сплавів даної системи в залежності від температури і концентрації називається діаграмою стану.
Діаграма стану двохкомпонентного сплаву будується у координатах “темпера-тура – концентрація”: на осі ординат відкладається температура (в градусах Цельсія), на осі абсцис - концентрація компонентів (у відсотках). Таким чином, кожна точка діаграми характеризує фазовий склад даного сплаву при заданій температурі.
Вид діаграми стану визначається характером взаємодії компонентів системи у твердому стані (у рідкому стані компоненти утворюють необмежено рідкі розчини). На рис.2.1 зображені основні типи діаграм стану двохкомпонентних сплавів.
Діаграму стану першого типу (рис.2.1, а) утворюють компоненти, які не взаємодіють і кристалізуються у вигляді механічної суміші. Характерними лініями діаграми є: ліквідус (АСВ) - геометричне місце критичних точок початку кристалізації сплавів, вище якої усі сплави даної системи знаходяться в рідкому стані; солідус (ДСЕ) - геометричне місце критичних точок кінця кристалізації сплавів, нижче якої усі сплави знаходяться у твердому стані. У системі є сплав, який кристалізується при найменшій і постійній (як і у чистих компонентів) температурі – евтектичний (точка С). У процесі його кристалізації утворюється однорідна механічна суміш двох компонентів - евтектика. Сплави, розташовані зліва від точки С, називаються доевтектичними. У них структурно вільними (надлишковими) є кристали компонента А. Сплави, розташовані справа від точки С, називаються заевтектичними. У них структурно вільними є кристали компонента В.
Рис.2.1. Основні типи діаграм стану двохкомпонентних сплавів.
Діаграми стану другого типу (рис.2.1, б) характерні для компонентів, які у твердому стані утворюють необмежено тверді розчини (Сu - Ni, Аu - Ni, Bi – Sb). Лінією ліквідус є лінія АmВ; лінією солідус – АnB.
Діаграми стану третього типу характерні для компонентів, які утворюють обмежені тверді розчини. Такі розчини прийнято позначати буквами грецької абетки: α - твердий розчин компонента В у кристалічній гратці компонента А; β - твердий розчин компонента А в кристалічній гратці компонента В. На рис.2.1, в наведено діаграму стану третього типу з евтектичною кристалізацією.
Діаграми стану четвертого типу (рис.2.1, д) характерні для компонентів, які при взаємодії утворюють хімічні сполуки. Такі діаграми є комбінованими, оскільки хімічна сполука поводиться в системі як самостійний компонент. Тоді можна розглядати системи A – AmBn і АmBn - B. Конкретний вид діаграми визначається характером взаємодії хімічної сполуки з основними компонентами системи.
Діаграми стану будують за критичними точками - температурами фазового перетворення. Оскільки фазові перетворення мають температурний гістерезис (критичні точки при нагріванні й охолодженні у багатьох сплавах не співпадають), то вони позначаються так: Ас - при нагріванні; Аr - при охолодженні. Сплави можуть мати декілька критичних точок.
Простим і доступним методом визначення критичних точок є термічний аналіз, який грунтується на побудові кривих нагрівання або охолодження. За рахунок аномалії теплових ефектів, пов'язаних із протіканням фазових перетворень, на кривих утворяться температурні зупинки чи перегини, за якими і визначають критичні точки (рис.2.2).
Рис.2.2. Криві охолодження: а - чисті метали, хімічні сполуки, евтектичні сплави; б - доевтектичні і заевтектичні сплави; г – тверді розчини
Криві охолодження чистих металів, хімічних сполук, евтектичних сплавів (рис.2.2.а) мають одну критичну точку Аr (ділянка 1-1). Доевтектичні, заевтектичні сплави і сплави, які утворюють тверді розчини, мають дві критичні точки: Аr1 і Аr2.
На рис.2.3 зображена схема установки для проведення термічного аналізу.
Рис.2.3. Схема установки для термічного аналізу: 1 - електрична піч, 2 – тигель з розплавом; 3 - кришка; 4 - термопара; 5 - мілівольтметр
Для вимірювання температури застосовують термометри або термоелектричні пірометри, що складаються з термопари і мілівольтметра. Термопара – це спай двох різнорідних провідників, при нагріванні якого в електричному колі виникає струм, сила якого залежить від опору ланцюга і значення термоелектрорушійної сили термопари. Застосовують різні типи термопар, наприклад, ПП (платина-платинородій) - максимальна температура 1300 °С; ХА (хромель-алюмель), максимальна температура до 1000 °С; НК (ніхром-константан), максимальна температура 900 °С; МК (мідь-константан), температура 200…400 °С.