
- •Глава 2 общие сведения об измерениях и приборах
- •§ 1. Понятие об измерениях
- •§ 2. Физические величины и их единицы
- •§ 3. Погрешность результата измерения и источники ее появления
- •§ 4. Классификация средств измерении
- •§ 5. Погрешности средств измерений и классы точности
- •Контрольные вопросы
- •Глава 3 государственная система промышленных приборов и средств автоматизации
- •§ 1. Принципы построения
- •§ 2. Характеристика ветвей гсп
- •§ 3. Преобразователи с унифицированными сигналами
- •Контрольные вопросы
- •Системы дистанционных измерении
- •§ 1. Назначение и классификация методов дистанционной передачи
- •§ 2. Электрические системы и преобразователи с естественными сигналами
- •§ 3. Вторичные приборы электрических и пневматических систем дистанционных измерений
- •Контрольные вопросы
- •Глава 5 измерение давлении и разрежении
- •§ 1. Основные определения и классификация приборов
- •§ 2. Деформационные манометры
- •§ 3. Электрические манометры
- •§ 4. Скважинные манометры
- •Контрольные вопросы
- •Глава 6 измерение температур
- •§ 1. Температурная шкала
- •§ 2. Термометры манометрические
- •§ 3. Электрические термометры сопротивления
- •§ 4. Измерение средней температуры нефти и нефтепродуктов в резервуарах
- •§ 5. Измерение температуры в скважинах
- •Контрольные вопросы
- •Глава 7 измерение расхода жидкости, пара и газа
- •§ 1. Определение и классификация методов измерения
- •§ 2. Объемные расходомеры
- •§ 3. Расходомеры переменного перепада давления
- •§ 4. Расходомеры постоянного перепада давления
- •§ 5. Расходомеры переменного уровня
- •§ 6. Тахометрические расходомеры
- •§ 7. Вибрационный массовый расходомер
- •§ 8. Электромагнитные расходомеры
- •§ 9. Измерение расхода в скважине
- •Контрольные вопросы
- •Глава 8 измерение уровня жидкостей в емкостях и скважинах
- •§ 1. Назначение и классификация приборов
- •§ 2. Поплавковые и буйковые уровнемеры
- •§ 3. Пьезометрические уровнемеры
- •§ 4. Измерение уровня жидкости в скважинах
- •Акустический метод измерения уровня в скважинах
- •Контрольные вопросы
- •Глава 9 измерение физических свойств веществ и примесей
- •§ 1. Измерение плотности
- •§ 2. Измерение вязкости
- •§ 3. Анализаторы содержания воды в нефти
- •§ 4. Анализаторы содержания солей в нефти
- •Контрольные вопросы
- •Глава 10 контроль процессов бурения скважин
- •§ 1. Параметры контроля процессов бурения скважин
- •§ 2. Автономные измерительные установки. Измерение осевой нагрузки на забой
- •Измерение крутящего момента
- •§ 3. Системы наземного контроля процесса бурения
- •Преобразователи
- •§ 4. Каналы связи дистанционного контроля глубинных параметров бурения
- •§ 5. Устройства дистанционного контроля глубинных параметров бурения с электрическим каналом связи
- •§ 6. Устройства дистанционного контроля глубинных параметров бурения с гидравлическим каналом связи. Индикатор осевой нагрузки
- •Контрольные вопросы
- •Часть вторая системы автоматического регулирования и средства автоматизации
- •Глава 11
- •Основные понятия теории автоматического регулирования
- •§ 1. Система автоматического управления
- •§2. Обратные связи
- •§ 3. Разомкнутые и замкнутые сау
- •§ 4. Принцип действия системы автоматического регулирования
- •§ 5. Классификация систем автоматического регулирования
- •§ 6. Требования, предъявляемые к cap
- •§ 7. Понятие статической характеристики
- •§ 8. Понятие динамических характеристик
- •Контрольные вопросы
- •Глава 12 расчет систем автоматического регулирования
- •§ 1. Типовые динамические звенья
- •§ 2. Способы соединения звеньев
- •§3 Понятия устойчивости системы
- •§ 4. Критерии устойчивости
- •§ 5. Оценка качества процесса автоматического регулирования
- •§ 6. Свойства объектов автоматического регулирования
- •Контрольные вопросы
- •Глава 13 общие сведения об автоматических регуляторах
- •§ 1. Классификация автоматических регуляторов
- •§ 2. Математические модели регуляторов
- •§ 3. Регуляторы прямого действия
- •Контрольные вопросы
- •Глава 14 пневматические регуляторы
- •§ 1. Основные особенности пневматических регуляторов
- •§ 2. Унифицированная система элементов промышленной пневмоавтоматики (усэппа)
- •§ 3. Основные регулирующие устройства и вторичные приборы системы старт
- •Контрольные вопросы
- •Глава 15 исполнительные устройства
- •§ 1. Общая характеристика и классификация
- •Исполнительных устройств
- •§ 2. Регулирующие органы
- •§ 3. Исполнительные механизмы
- •§ 4. Основные характеристики и расчет исполнительных устройств
- •Контрольные вопросы
- •Глава 16 построение функциональных систем автоматизации технологических процессов
- •§ 1. Состав технической документации по автоматизации технологического процесса
- •§ 2. Условные обозначения средств автоматизации по конструктивному принципу
- •§ 3. Условные обозначения средств автоматизации по функциональному признаку приборов и устройств
- •§ 4. Функциональные схемы автоматизации
- •Глава 17
- •§ 1.Теоретические основы автоматического
- •§ 2. Фрикционные и гидравлические устройства подачи долота
- •§ 3. Электромашинные устройства подачи долота
- •§ 4. Забойные устройства подачи долота
- •Контрольные вопросы
- •Глава 18 автоматизация добычи и промыслового сбора нефти и нефтяного газа
- •§ 1 Характерные особенности нефтедобывающих предприятии и основные принципы их автоматизации
- •§ 2. Типовая технологическая схема автоматизированного нефтедобывающего предприятия
- •§ 3. Автоматизация нефтяных скважин
- •§ 4. Автоматизированные групповые измерительные установки
- •§ 5. Автоматизированные сепарационные установки
- •§ 6. Автоматизированные блочные дожимные насосные станции
- •Глава 19 автоматизация подготовки и откачки товарной нефти
- •§ 1.Характеристика технологического процесса и задачи автоматизации
- •§ 2. Автоматизированные блочные установки подготовки нефти
- •§ 3. Автоматическое измерение массы товарной нефти
- •§ 4. Автоматизация нефтеперекачивающих насосных станций
- •Контрольные вопросы
- •Глава 20 автоматизация объектов поддержания пластовых давлении
- •§ 1. Характеристика системы поддержания пластовых давлений (ппд)
- •§ 2. Автоматизированные блочные установки для очистки сточных вод и автоматизация водозаборных скважин
- •§ 3. Автоматизированные блочные кустовые насосные станции
- •Контрольные вопросы
- •Глава 21 автоматизация добычи и промысловой подготовки газа
- •§ 1. Характеристика газовых и газоконденсатных промыслов как объектов автоматизации
- •§ 2. Автоматическое управление добычей промысла
- •§ 3. Автоматическое управление процессом низкотемпературной сепарации газа
- •§ 4. Автоматизация абсорбционного процесса осушки газа
- •Контрольные вопросы
- •Глава 22 основные элементы и узлы комплекса технических средств асу тп
- •§ 1. Назначение и общие принципы организации асу тп
- •§ 2. Основные элементы систем телемеханики и вычислительной техники
- •§ 3. Аналого-цифровые и цифро-аналоговые преобразователи
- •Контрольные вопросы
- •Глава 23 основы вычислительной техники
- •§ 1. Общие сведения об эвм
- •§ 2. Принципы построения и области применения цвм
- •§ 3. Процессоры
- •§ 4. Запоминающие устройства
- •§ 5. Устройства ввода-вывода
- •§ 6. Порядок решения задачи на цвм
- •Контрольные вопросы
- •Глава 24 телемеханизация технологических процессов добычи нефти и газа
- •§ 1. Понятие об агрегатной системе телемеханической техники
- •§ 2. Телемеханизация нефтедобывающих предприятий
- •§ 3. Телемеханизация газодобывающих предприятий
- •§ 4. Микропроцессоры и некоторые перспективы их применения в нефтяной и газовой промышленности
- •Контрольные вопросы
- •Список литературы
- •Оглавление
§ 4. Принцип действия системы автоматического регулирования
В дальнейшем рассмотрим только замкнутые САУ по отклонению (системы автоматического регулирования CAP), наиболее распространенные при решении практических задач управления в нефтяной и газовой промышленности.
Рассмотрим более подробно принцип действия системы автоматического регулирования на примере системы поддержания постоянного давления в сепараторе (рис. 11.4). На вход сепаратора поступает газожидкостная смесь в количестве Qсм, которая разделяется на жидкую часть, отбираемую снизу в количестве Qж, и газовую, уходящую сверху сепаратора в количестве Qr. В состоянии равновесия при определенном давлении ρ в сепараторе расходы уравновешены, т. е.Qсм=Qг+Qж. Основным параметром, определяющим характер технологического процесса в сепараторе, является давление ρ. При изменении расходов потоков на входе или выходе сепаратора давление в нем будет изменяться.
Пусть задача заключается в том, чтобы поддерживать давление в сепараторе на определенном значении. Установим на сепараторе измерительный прибор 1 (манометр) с целью контроля давления и орган управления 2 расходом (задвижку) на газовой линии (рис. 11.4,а). Тогда, в случае уменьшения или увеличения давления, можно, наблюдая за показаниями манометра и изменяя проходное сечение органа управления, восстанавливать желаемое значение давления в сепараторе. Получим систему регулирования давления.
Однако, так как наблюдение за давлением и изменение проходного сечения органа управления проводится человеком, такое регулирование называется ручным.
Для получения системы автоматического регулирования функции человека должны быть переданы автоматическому устройству, называемому в этом случае автоматическим регулятором или просто регулятором.
Приведем основные понятия и определения, используемые при изучении систем регулирования.
Параметр, который необходимо регулировать в ходе технологического процесса, называется регулируемым. Значение регулируемого параметра в любой момент времени называется текущим, а то его значение, которое необходимо поддерживать в процессе, — заданным. Разность между текущим и заданным значением регулируемого параметра называется рассогласованием или отклонением.
О
В нашем примере система автоматического регулирования будет действовать следующим образом. В случае появления возмущающего воздействия, например при увеличении расхода потока смеси на входе (Оси), давление в сепараторе (регулируемый параметр) повысится. Автоматический регулятор, сравнивая воздействия на мембрану 1 (элемент сравнения) со стороны давления газа (текущее значение) и со стороны пружины 2 (заданное значение), будет осуществлять регулирующее воздействие, увеличивая проходное сечение регулирующего органа 3 и тем самым уменьшая рассогласование. В этой системе мембрана 1 выполняет также функцию чувствительного элемента.
При изучении системы автоматического регулирования принято представлять реально существующие системы в виде так называемых функциональных схем.
Функциональной схемой CAP называется такая, в которой каждому функциональному элементу реальной системы соответствует определенное изображение.
Функциональная схема CAP давления в сепараторе показана на рис. 11.5. Выходной величиной системы (Хвых) является основной регулируемый параметр—давление в сепараторе. Параметры, которые могут вызвать отклонение регулируемого параметра от заданного значения, показаны как входные.
Основные элементы системы — объект регулирования ОР, чувствительный элемент ЧЭ, измеряющий текущее значение регулируемого параметра, элемент сравнения ЭС, сравнивающий текущее значение регулируемого параметра с его заданным значением 3, и регулирующий орган РО. осуществляющий регулирующее воздействие.
Последнее осуществляется изменением расхода газа (Qг), причем в таком направлении, чтобы уменьшить рассогласование. Следовательно, рассмотренная CAP — замкнутая система с отрицательной обратной связью. Чувствительный элемент, элемент сравнения и регулирующий орган образуют в этой системе автоматический регулятор АР.