
- •Глава 2 общие сведения об измерениях и приборах
- •§ 1. Понятие об измерениях
- •§ 2. Физические величины и их единицы
- •§ 3. Погрешность результата измерения и источники ее появления
- •§ 4. Классификация средств измерении
- •§ 5. Погрешности средств измерений и классы точности
- •Контрольные вопросы
- •Глава 3 государственная система промышленных приборов и средств автоматизации
- •§ 1. Принципы построения
- •§ 2. Характеристика ветвей гсп
- •§ 3. Преобразователи с унифицированными сигналами
- •Контрольные вопросы
- •Системы дистанционных измерении
- •§ 1. Назначение и классификация методов дистанционной передачи
- •§ 2. Электрические системы и преобразователи с естественными сигналами
- •§ 3. Вторичные приборы электрических и пневматических систем дистанционных измерений
- •Контрольные вопросы
- •Глава 5 измерение давлении и разрежении
- •§ 1. Основные определения и классификация приборов
- •§ 2. Деформационные манометры
- •§ 3. Электрические манометры
- •§ 4. Скважинные манометры
- •Контрольные вопросы
- •Глава 6 измерение температур
- •§ 1. Температурная шкала
- •§ 2. Термометры манометрические
- •§ 3. Электрические термометры сопротивления
- •§ 4. Измерение средней температуры нефти и нефтепродуктов в резервуарах
- •§ 5. Измерение температуры в скважинах
- •Контрольные вопросы
- •Глава 7 измерение расхода жидкости, пара и газа
- •§ 1. Определение и классификация методов измерения
- •§ 2. Объемные расходомеры
- •§ 3. Расходомеры переменного перепада давления
- •§ 4. Расходомеры постоянного перепада давления
- •§ 5. Расходомеры переменного уровня
- •§ 6. Тахометрические расходомеры
- •§ 7. Вибрационный массовый расходомер
- •§ 8. Электромагнитные расходомеры
- •§ 9. Измерение расхода в скважине
- •Контрольные вопросы
- •Глава 8 измерение уровня жидкостей в емкостях и скважинах
- •§ 1. Назначение и классификация приборов
- •§ 2. Поплавковые и буйковые уровнемеры
- •§ 3. Пьезометрические уровнемеры
- •§ 4. Измерение уровня жидкости в скважинах
- •Акустический метод измерения уровня в скважинах
- •Контрольные вопросы
- •Глава 9 измерение физических свойств веществ и примесей
- •§ 1. Измерение плотности
- •§ 2. Измерение вязкости
- •§ 3. Анализаторы содержания воды в нефти
- •§ 4. Анализаторы содержания солей в нефти
- •Контрольные вопросы
- •Глава 10 контроль процессов бурения скважин
- •§ 1. Параметры контроля процессов бурения скважин
- •§ 2. Автономные измерительные установки. Измерение осевой нагрузки на забой
- •Измерение крутящего момента
- •§ 3. Системы наземного контроля процесса бурения
- •Преобразователи
- •§ 4. Каналы связи дистанционного контроля глубинных параметров бурения
- •§ 5. Устройства дистанционного контроля глубинных параметров бурения с электрическим каналом связи
- •§ 6. Устройства дистанционного контроля глубинных параметров бурения с гидравлическим каналом связи. Индикатор осевой нагрузки
- •Контрольные вопросы
- •Часть вторая системы автоматического регулирования и средства автоматизации
- •Глава 11
- •Основные понятия теории автоматического регулирования
- •§ 1. Система автоматического управления
- •§2. Обратные связи
- •§ 3. Разомкнутые и замкнутые сау
- •§ 4. Принцип действия системы автоматического регулирования
- •§ 5. Классификация систем автоматического регулирования
- •§ 6. Требования, предъявляемые к cap
- •§ 7. Понятие статической характеристики
- •§ 8. Понятие динамических характеристик
- •Контрольные вопросы
- •Глава 12 расчет систем автоматического регулирования
- •§ 1. Типовые динамические звенья
- •§ 2. Способы соединения звеньев
- •§3 Понятия устойчивости системы
- •§ 4. Критерии устойчивости
- •§ 5. Оценка качества процесса автоматического регулирования
- •§ 6. Свойства объектов автоматического регулирования
- •Контрольные вопросы
- •Глава 13 общие сведения об автоматических регуляторах
- •§ 1. Классификация автоматических регуляторов
- •§ 2. Математические модели регуляторов
- •§ 3. Регуляторы прямого действия
- •Контрольные вопросы
- •Глава 14 пневматические регуляторы
- •§ 1. Основные особенности пневматических регуляторов
- •§ 2. Унифицированная система элементов промышленной пневмоавтоматики (усэппа)
- •§ 3. Основные регулирующие устройства и вторичные приборы системы старт
- •Контрольные вопросы
- •Глава 15 исполнительные устройства
- •§ 1. Общая характеристика и классификация
- •Исполнительных устройств
- •§ 2. Регулирующие органы
- •§ 3. Исполнительные механизмы
- •§ 4. Основные характеристики и расчет исполнительных устройств
- •Контрольные вопросы
- •Глава 16 построение функциональных систем автоматизации технологических процессов
- •§ 1. Состав технической документации по автоматизации технологического процесса
- •§ 2. Условные обозначения средств автоматизации по конструктивному принципу
- •§ 3. Условные обозначения средств автоматизации по функциональному признаку приборов и устройств
- •§ 4. Функциональные схемы автоматизации
- •Глава 17
- •§ 1.Теоретические основы автоматического
- •§ 2. Фрикционные и гидравлические устройства подачи долота
- •§ 3. Электромашинные устройства подачи долота
- •§ 4. Забойные устройства подачи долота
- •Контрольные вопросы
- •Глава 18 автоматизация добычи и промыслового сбора нефти и нефтяного газа
- •§ 1 Характерные особенности нефтедобывающих предприятии и основные принципы их автоматизации
- •§ 2. Типовая технологическая схема автоматизированного нефтедобывающего предприятия
- •§ 3. Автоматизация нефтяных скважин
- •§ 4. Автоматизированные групповые измерительные установки
- •§ 5. Автоматизированные сепарационные установки
- •§ 6. Автоматизированные блочные дожимные насосные станции
- •Глава 19 автоматизация подготовки и откачки товарной нефти
- •§ 1.Характеристика технологического процесса и задачи автоматизации
- •§ 2. Автоматизированные блочные установки подготовки нефти
- •§ 3. Автоматическое измерение массы товарной нефти
- •§ 4. Автоматизация нефтеперекачивающих насосных станций
- •Контрольные вопросы
- •Глава 20 автоматизация объектов поддержания пластовых давлении
- •§ 1. Характеристика системы поддержания пластовых давлений (ппд)
- •§ 2. Автоматизированные блочные установки для очистки сточных вод и автоматизация водозаборных скважин
- •§ 3. Автоматизированные блочные кустовые насосные станции
- •Контрольные вопросы
- •Глава 21 автоматизация добычи и промысловой подготовки газа
- •§ 1. Характеристика газовых и газоконденсатных промыслов как объектов автоматизации
- •§ 2. Автоматическое управление добычей промысла
- •§ 3. Автоматическое управление процессом низкотемпературной сепарации газа
- •§ 4. Автоматизация абсорбционного процесса осушки газа
- •Контрольные вопросы
- •Глава 22 основные элементы и узлы комплекса технических средств асу тп
- •§ 1. Назначение и общие принципы организации асу тп
- •§ 2. Основные элементы систем телемеханики и вычислительной техники
- •§ 3. Аналого-цифровые и цифро-аналоговые преобразователи
- •Контрольные вопросы
- •Глава 23 основы вычислительной техники
- •§ 1. Общие сведения об эвм
- •§ 2. Принципы построения и области применения цвм
- •§ 3. Процессоры
- •§ 4. Запоминающие устройства
- •§ 5. Устройства ввода-вывода
- •§ 6. Порядок решения задачи на цвм
- •Контрольные вопросы
- •Глава 24 телемеханизация технологических процессов добычи нефти и газа
- •§ 1. Понятие об агрегатной системе телемеханической техники
- •§ 2. Телемеханизация нефтедобывающих предприятий
- •§ 3. Телемеханизация газодобывающих предприятий
- •§ 4. Микропроцессоры и некоторые перспективы их применения в нефтяной и газовой промышленности
- •Контрольные вопросы
- •Список литературы
- •Оглавление
§ 2. Измерение вязкости
Вязкостью, или внутренним трением, называют свойство жидкостей и газов, характеризующее сопротивление действию внешних сил, вызывающих их течение. Одна и та же сила создает в разных жидкостях разные скорости перемещения слоев, отстоящих один от другого на одинаковых расстояниях. От вязкости зависит мощность, затрачиваемая на перекачку жидкости по трубопроводам.
Вязкость—основная физико-механическая характеристика смазочных масел. Она влияет на способность данного сорта масла при температуре, характерной для данного узла трения, выполнять свои функции.
Качество буровых растворов, способность их удерживать выбуренную породу во взвешенном состоянии и тем самым обеспечивать очистку забоя в процессе бурения также в значительной мере зависят от вязкости.
Различают динамическую и кинематическую вязкость.
Динамическая вязкость ti жидкости определяется силами межмолекулярного взаимодействия. Измеряют ее в Па*с и определяют по формуле
где dw/dn—градиент скорости по поперечному сечению потока; S— площадь внутреннего сдвига.
Величина, обратная динамической вязкости, носит название текучести, которая выражается в Па-1*с-1.
Кинематическая вязкость представляет собой отношение динамической вязкости жидкости к ее плотности ρ при той же температуре, т. е,
Иногда вязкость нефтепродуктов нормируется не в абсолютных величинах, а в градусах условной вязкости:
Условной вязкостью ВУ называется отношение времени истечения 200 мл испытуемого нефтепродукта через калиброванную трубку при температуре испытания (τж) ко времени истечения 200 мл дистиллированной воды при температуре 20 °С (τв).
Вязкость в значительной мере зависит от степени нагрева вещества, поэтому необходимо всегда указывать температуру его определения. В технических требованиях вязкость чаще всего нормируется при 50 и 100 °С, реже при 20 °С (для маловязких масел).
Приборы для определения вязкости называют вискозиметрами. В зависимости от принципа действия вискозиметры бывают капиллярные, с падающим шариком и ротационные. Кроме того, существуют вискозиметры для определения условной вязкости.
Капиллярные вискозиметры. Действие капиллярных вискозиметров основано на законе Пуазейля, характеризующем истечение жидкостей из капилляров:
где r—радиус капилляра, м; р—давление, при котором происходит истечение жидкости из капилляра, Па; τ—время истечения объема V жидкости, с; L—длина капилляра.
Формулу (9.7) можно записать в следующем виде:
где Q—расход жидкости через капилляр (Q=V/τ), м3/с; Δр—перепад давления на концах трубки, Па.
При постоянном расходе жидкости Q, а также при неизменных геометрических размерах капилляра τ и L динамическую вязкость можно определить по перепаду давления на капиллярной трубке
Истечение исследуемой жидкости из трубки определенных диаметра и длины происходит под действием силы тяжести или постоянного внешнего давления. Вязкость определяют по перепаду давления или по давлению перед капиллярной трубкой.
Вискозиметры с падающим шариком. Зависимость скорости падения шарика в жидкости от вязкости последней находят по формуле Стокса
где К. — коэффициент пропорциональности; ρ — плотность материала шарика; ρо—плотность исследуемой жидкости; г—радиус шарика; w—скорость равномерного падения шарика.
Закон Стокса справедлив для условий, при которых шарик должен быть правильной формы, иметь гладкую поверхность и двигаться со скоростью, при которой вокруг него не было бы вихрей и устанавливалось ламинарное течение жидкости. Кроме того, жидкость должна быть однородна, без влияния посторонних движений (конвекционных токов, движения пузырьков газа и т. п.).
С
т.е. измерение вязкости сводится к отсчету времени, в течение которого шарик при падении проходит путь от верхней до нижней сетки.
Вторичный прибор 11 представляет собой электросекундомер, управляемый релейным блоком 10. Пределы измерения прибора можно менять, подбирая размер шарика.
Ротационные вискозиметры. Действие этих приборов основано на измерении вязкостного сопротивления при вращении тела в жидкости. Крутящий момент при этом выражается линейной зависимостью
где К—постоянная прибора; η—вязкость жидкости, ω—угловая скорость.
Ротационные вискозиметры различаются формой вращающегося элемента и способом измерения крутящего момента. В качестве вращающегося элемента применяют пластины, цилиндры, лопасти, набор дисков.
Крутящий момент определяют одним из следующих способов:
1) по силе тока, потребляемой электродвигателем привода вращающегося элемента:
2) по углу поворота уравновешивающей торсионной пружины;
3) по реактивному моменту вращения статора приводного электродвигателя.
Схема устройства ротационного вискозиметра, использующего первый способ измерения крутящего момента, показана на рис. 9.6.
Управляющая обмотка ωy вместе с конденсатором С составляет одно из плеч мостовой схемы, в диагональ которой включен показывающий прибор П. Емкость С соответствует условию резонанса с индуктивностью обмотки оду. Нуль прибора устанавливается и уравновешивается мостовой схемой при вращении цилиндра в воде. При вращении цилиндра в исследуемой жидкости в зависимости от ее вязкости изменяется момент на валу двигателя, а следовательно, и эквивалентное сопротивление в цепи обмотки ωу, что приводит к разбалансу моста. Таким образом, с изменением вязкости жидкости изменяется сила тока, протекающего через показывающий прибор, включенный в диагональ моста.
Для измерения дифференциальной вязкости (разность вязкостей бурового раствора на входе в скважину и выходе из нее) существует измерительная система, схема которой показана на рис. 9.7.
Синхронный двигатель 4 с постоянной угловой скоростью вращает ось двойного бесконтактного сельсина-датчика 5, который по индикаторной схеме соединен с двумя бесконтактными сельсинами-приемниками 2 и 7. Ось сельсина-приемника 2 механически соединена с телом вращения, погруженным в буровой раствор, поступающий в скважину, непосредственно вблизи всасывающей линии бурового насоса.
В связи с индикаторным режимом работы сельсинов, сельсин 2 будет также вращаться со скоростью п, а силы вязкости бурового раствора создадут на его оси тормозной момент. При этом произойдет рассогласование вращающихся сельсинов 5 и 2 и появится ток в проводах их связи.
При ламинарном движении слоя жидкости, примыкающего к телу вращения, вязкость будет пропорциональна тормозному моменту, а в пределах углового рассогласования сельсина до 30°—току, проходящему по линии связи. Силу этого тока регистрирует миллиамперметр 3, шкала которого отградуирована непосредственно в единицах вязкости. Вязкость бурового раствора, выходящего из скважины, измеряют аналогичным сельсином-приемником и миллиамперметром 6. Тело вращения, связанное с осью сельсина 7, погружено в. буровой раствор, выходящий из скважины.
Размеры и форма тел вращения, а также электрические параметры сельсинов 2 и 7 принимают одинаковыми. Сила токов, протекающих через первичные обмотки трансформаторов ТР1 и ТР2, зависит от вязкости бурового раствора в сосудах 1 а 9. Электрические сигналы от вторичных обмоток трансформаторов поступают в ячейку автоматического -вычитания, состоящую из детекторов В, емкостных фильтров С и мостовой схемы (сопротивлений R1, R2, R3). Показания миллиамперметра 8 также градуируют в единицах вязкости раствора. Переменные сопротивления R1 и R3 позволяют балансировать мост и регулировать коэффициент передачи схемы.