Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биология с основами экологии. МСХ, ТО. 1-4 курс...doc
Скачиваний:
159
Добавлен:
20.08.2019
Размер:
2 Mб
Скачать

6. Трансляция

Синтез белка (трансляция) является самым сложным из биосинтетических процессов: он требует очень большого количества ферментов и других специфических макромолекул, общее количество которых, видимо, доходит до трёхсот. Несмотря на большую сложность, синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками. Синтез полипептидных цепей белков по матрице и-РНК, выполняемый рибосомами, называется трансляцией (лат. "translatio" – перевод).

Важнейшие участники процесса трансляции: информационная (матричная) РНК, транспортная РНК и рибосомы. Молекулы и-РНК направляются к рибосомам, на которых происходит синтез белка. Туда же из цитоплазмы поступают аминокислоты, доставляемые т-РНК. Поскольку в построении белков участвуют 20 аминокислот, то существуют не менее 20 разных т-РНК. В ряде мест цепочки т-РНК имеются 4-7 последовательных нуклеотидных звеньев, комплементарных друг другу. Здесь образуются водородные связи. Образуется сложная петлистая структура, похожая на цветок клевера.

Активные зоны тРНК:

а) акцепторный "стебель", присоединение аминокислоты,

б) антикодоновая петля,

в) петля для присоединения к рибосоме,

г) петля соединения со своим ''узнающим'' ферментом.

У его верхушки расположен триплет нуклеотидов, комплементарных нуклеотидам кодона и-РНК, их называют антикодонами. У ножки “листа клевера” находится участок, связывающий аминокислоту. Нуклеотидный состав кодовых триплетов т-РНК комплементарен нуклеотидному составу триплетов и-РНК. Например, кодовый триплет аланиновой т-РНК – ЦГА (в и-РНК ему комплементарен триплет ГЦУ), а кодовый триплет валиновой т-РНК – ЦАА (в и-РНК ему комплементарен триплет ГУУ).

Синтез белка происходит в рибонуклеопротеиновых частицах, называющихся рибосомами. Диаметр рибосомы бактерии кишечной палочки составляет 18 нм, а их общее количество – десятки тысяч в клетке. Рибосомы эукариот несколько крупнее (21 нм). В рибосоме выделяют акцепторный участок, куда поступают новые тРНК и донорный участок, где располагаются тРНК несущие полипептидные цепочки.

Процесс синтеза белка протекает в пять этапов.

1. Активация аминокислот. Используя энергию АТФ, аминокислоты соединяются с определённой, взаимодействующей только с ними транспортной РНК.

2. Инициация белковой цепи. Информационная РНК, содержащая информацию о данном белке, связывается с рибосомой и транспортной РНК, несущей аминокислоту.

3. Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот.

4. Терминация – завершения синтеза цепи.

5. Сворачивание и взаимодействие с небелковыми компонентами. Чтобы принять обычную форму и приобрести соответствующие функции, белок должен образовать определённую пространственную конфигурацию. Этому способствует включение в состав белковой молекулы небелковых элементов, например железа в структуру гемоглобина.

Лекция 7. Деление клеток. Мутации

1. Митоз

2. Мейоз

3. Мутации

1. Митоз

Все клетки появляются путём деления родительских клеток. В зависимости от механизма распределения хромосом по дочерним клеткам различают несколько типов деления клеток: митоз, мейоз, амитоз, эндомитоз. Большинству клеток свойственен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза. Интерфаза – период между делениями (митозами), состоит из трех этапов (пресинтетического, синтетического и постсинтетического). В течение 4-8 часов после деления клетка увеличивает свою массу. Некоторые клетки (нервные клетки) навсегда остаются в этой стадии – никогда не делятся. У других же в течение 6-9 часов удваивается хромосомная ДНК (синтез ДНК – основной процесс синтетического периода). Когда масса клетки увеличивается в два раза, начинается митоз.

Митоз – (от греч. mitos – нить), способ деления ядер клеток, обеспечивающий равномерное распределение генетического материала между дочерними клетками. Митоз (непрямое деление) – основной способ деления соматических клеток эукариот. В типичной животной клетке митоз включает 4 этапа: профазу, метафазу, анафазу и телофазу.

В профазу центриоли удваиваются и расходятся к полюсам клетки. Ядерная мембрана разрушается. Микротрубочки выстраиваются от одной центриоли к другой, образуя веретено деления. Концевые части хромосом (теломеры) разъединяются, но всё ещё остаются попарно сцепленными в области первичной перетяжки (центромеры).

В метафазе хромосомы, за счет нитей веретена деления, выстраиваются в экваториальной плоскости клетки. Центромеры, удерживающие дочерние хромосомы, делятся, после чего хромосомы полностью разъединяются.

В стадии анафазы хромосомы перемещаются к полюсам клетки. Когда хромосомы достигают полюсов, начинается телофаза. Клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны. Каждая дочерняя клетка получает диплоидный набор хромосом, полностью идентичный по составу генов материнскому.

За счет митоза в многоклеточных организмах осуществляется рост и развитие. У одноклеточных организмов осуществляется деление надвое.

2. Мейоз (от греч. meiosis – уменьшение), способ деления клетки, в результате которого происходит уменьшение (редукция) числа хромосом в дочерних клетках, образуются половые клетки. В ходе мейоза одна диплоидная клетка после двух последовательных делений дает начало 4 гаплоидным половым клеткам. При слиянии мужских и женских половых клеток диплоидный набор хромосом восстанавливается.

Мужские половые клетки имеют примерно одинаковые размеры, то при образовании яйцеклеток распределение цитоплазмы происходит очень неравномерно: одна клетка остаётся крупной, а три остальных малы и служат для удаления избыточного генетического материала из яйцеклетки.

Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом). Механизм мейоза (кроссинговер, случайное расхождение хромосом в анафазе I) обеспечивает новые комбинации родительских генов – поддерживает генетическое разнообразие внутри вида.

Амитоз – это прямое деление ядер. При амитозе не происходит конденсации хромосом и не образуется веретено деления, ядро делится перетяжкой или фрагментацией, оставаясь в интерфазном состоянии. Цитокинез не всегда следует за делением ядра, поэтому в результате амитоза обычно возникают многоядерные клетки. Амитотические деления характерны для клеток, заканчивающих развитие: отмирающих эпителиальных клеток, фолликулярных клеток яичников и т.д. Встречается амитоз при патологических процессах: воспалении, злокачественном росте.

Удвоение ДНК клетки не всегда сопровождается ее разделением надвое. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоз.