Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые ответы на Госы по СВМ.doc
Скачиваний:
31
Добавлен:
19.08.2019
Размер:
14.06 Mб
Скачать

1.Призначення терморегулирующого вентиля (ТРВ) в системі рефри-

жераторної установки ?

2. Поршневий насос подвійної дії, конструкція, принцип дії. ПТЕ.

3 Система об'ємного гідравлічного приводу та її елементи. ПТЕ. Вимоги Регистру до системи об'ємного гідравлічного приводу.

======================

1.Підтримувати певну температуру перегрівання пари

холодагенту.

2.Принцип действия насоса. Подача насоса, воздушные колпаки. Параметры работы насоса. Преимущества и недостатки поршневых насосов.

Рис. 3. Схема насосной установки поршневого типа.

Поршневые насосы относятся к объёмным или насосам вытеснения (рис. За). При ходе поршня 4 во всасывающей полости цилиндра 3 создаётся разряжение и жидкость под давлением р0 через всасывающий клапан 9 поступает в цилиндр - происходит процесс всасывания. При обратном ходе поршня он давит на жидкость, давление в цилиндре повышается и жидкость через нагнетательный клапан 10 выталкивается из цилиндра - происходит процесс нагнетания. За два хода поршня только один рабочий, такой насос называется простого или однократного действия. Если процесс всасывания и нагнетания будет происходить при каждом ходе поршня, то такой насос (рис. 36) станет двукратного действия. Кратность действия насоса достигается изменением его конструкции, т.е. они делаются с двумя или более цилиндрами.

Объёмная производительность (подача) поршневого насоса определится по формуле:

Q = F*s*n*k*ηн

где: Р – площадь поршняМ2

S - ход поршня, м;

n - частота вращения коленчатого вала, об/мин;

к - коэфф. подачи насоса.

Регулируют подачу насоса:

1. перепуском жидкости из нагнетательного трубопровода во всасывающий;

2. прикрытием: клапана на всасывающем трубопроводе;

3. изменением частоты вращения вала приводного двигателя.

У насосов перекачивающих нефтепродукты, поршни 2 чугунные с текстолитовыми уплотнительными кольцами, а у перекачивающих воду, поршни латунные с эбонитовыми кольцами.

Рис. 1.4. Графики подачи поршневых насосов.

Для уменьшения неравномерности подачи и обеспечения равномерного течения жидкости на всасывающем и нагнетательном трубопроводах насоса применяют воздушные колпаки. Верхняя часть колпаков заполнена воздухом, а нижняя - перекачиваемой жидкостью. При движении поршня с максимальной скоростью, подача жидкости превышает среднюю подачу и избыток жидкости поступает в колпак. Уровень жидкости в колпаке повышается и она сжимает воздух. При уменьшении подачи или прекращении её совсем, жидкость под давлением воздуха в колпаке продолжает поступать в трубопровод. Для добавления воздуха в нагнетательный колпак и удаления его из всасывающего - устанавливают специальные клапаны.

К преимуществам поршневых насосов относят:

1. Сухое всасывание;

2. Постоянный напор, не зависящий от подачи;

3. Способность создавать высокое давление;

4. Простоту регулирования;

5. Высокий КПД.

К недостаткам поршневых насосов относят:

1. Пульсирующий поток жидкости;

2. Множество движущихся деталей (поршень, клапана, приводы);

3. Чувствительность к загрязнённости перекачиваемой жидкости;

4. Большая масса и габариты установки;

5. Пульсирующий поток жидкости;

6. Множество движущихся деталей (поршень, клапана, приводы);

7. Чувствительность к загрязнённости перекачиваемой жидкости;

8. Большая масса и габариты.

3.3333

Требования, предъявляемые к рулевым устройствам

Из всех судовых устройств рулевое является наиболее нагружен­ным, так как оно работает постоянно в

По Правилам Регистра рулевое устройство судна должно иметь 2 привода - основной и запасный, причем основной ру­левой привод должен быть, как правило, механическим. Основной ру­левой привод должен обеспечивать при полной скорости переднего хо­да перекладку руля (поворотной насадки) на угол от 35° одного борта до 35° другого борта за время не более 30 с. Основной привод может быть ручным, если указанные углы и время перекладки руля и пово­ротной насадки обеспечиваются одним человеком при усилии на руко­ятке штурвала не более 118 Н/м и частоте вращения штурвала не более 25 об/мин за одну полную перекладку.

Запасный рулевой привод должен обеспечивать перекладку руля и поворотной насадки с борта на борт при скорости переднего хода суд­на, равной 80 % наибольшей. При этом время перекладки на угол от 20° одного борта до 20° другого борта не должно превышать 60 с. Запасный рулевой привод может быть ручным, если приведенные требо­вания выполняются при усилии на рукоятке штурвала не более 157 Н/м одного работающего и частоте вращения штурвала не более 25 об/мин за одну полную перекладку. Переход с основного рулевого привода на запасный должен осуществляться по возможности немедленно, но не более чем за 10 с. Запасный рулевой привод должен быть независимым от основного и по возможности воздействовать непосредственно на баллер руля.

1. Паралелограми швидкостей на робочому колесі відцентрового насоса.

2. Система стислого повітря. Призначення та склад. Вимоги до неї. ПТЕ

при експлуатації системи стислого повітря.

3. Передача потужності на гвинт. Грибні гвинти.

1. При вращении лопастного колеса вокруг оси О с угловой скоростью ω (омега), вследствие силового воздействия лопастного колеса на жидкость, каждая её частица двигаясь в межлопастном пространстве, совершает сложное движение. Параллелограммы скоростей на рабочем колесе изображены на схеме (рис. ).

При входе на лопасть и выходе с лопасти, каждая частица жидкости приобретает

соответственно:

окружные скорости u1 и u2, направленные по касательным к входной и выходной окружностям лопастного колеса;

относительные скорости w1 и w2 направленные по касательной к поверхности профиля лопасти;

абсолютные скорости с1 и с2, получаемые в результате геометрического сложения u1

w1 и u2 w2 и направленные под углом α 1 и α 2 к соответствующим окружным скоростям;

Так как насос представляет собой механизм, преобразующий механическую энергию привода, в энергию (напор), сообщающую движение жидкости в межлопастном пространстве колеса, то теоретическую её величину (напор), полученную при работе насоса, можно определить по формуле Эйлера:

C 2 U2 соs α 2 – C 1 U1 соs α 1

Н t ∞ = __________________________

g

В виду того, что у центробежного насоса отсутствует направляющий аппарат при входе жидкости на лопасти, во избежание больших гидравлических потерь от ударов жидкости о лопасти, и уменьшения потерь напора, вход жидкости на колесо делают радиальным (направление абсолютной скорости С1 - радиальное). При этом α 1 =90, тогда соs 90 - 0, следовательно, произведение C 1 U1 соs α 1 = 0. Таким образом, основное уравнение напора центробежного насоса, или уравнение Эйлера примет вид:

Н t ∞ = C 2 U2 соs α 2 / g

В действительном насосе имеется конечное число лопастей и потери напора вследствие завихрений частиц жидкости учитываются коэффициентом φ (фи), а гидравлические сопротивления учитываются гидравлическим КПД - ηг тогда действительный напор примет вид:

Нд = Н t φηг

С учётом всех потерь КПД центробежного насоса составляет η н — 0.46-0,80.

В эксплуатационных условиях напор центробежного насоса определяется по эмпирической формуле и зависит от числа оборотов приводного двигателя и диаметра лопастного колеса:

Нн = к'* n 2* D2 ,

где: к'- опытный безразмерный коэффициент

к' = (1-5) 104

n - частота вращения рабочего колеса, об/мин.

D - наружный диаметр колеса, м.

Подачу насоса лс -1 ориентировочно определяют по диаметру н нагнетательного патрубка:

Qн = k" d 2

где: k" - для диаметра патрубка до 100 мм - 13-48, более 100 мм – 20-25

d – диаметр нагнетательного патрубка в дм

2. Сжатый воздух широко применяется на судах, например, для пуска дизелей или для очистки механизмов при уходе за ними. Воз­дух под давлением 2,5 МПа и выше обычно получают в многосту­пенчатом компрессоре. Воздух в компрессоре сжимается сначала в первой ступени, охлаждается и затем сжимается до более высокого давления во второй ступени, затем снова охлаждается и сжимается в следующей ступени. Наиболее часто применяется двухступенча­тый компрессор. При ходе всасывания воздух заполняет цилиндр первой ступени через глушитель, фильтр и всасывающий клапан первой ступени. Всасывающий клапан закрывается, когда поршень будет в н. м. т., после чего начинается сжатие- воздуха. Когда давление воздуха до­стигает значения, заданного для первой ступени, начинается нагне­тание воздуха через нагнетательный клапан в холодильник первой ступени. Таким же образом происходит всасывание и сжатие в ци­линдре второй ступени, в котором благодаря его меньшему объему достигается более высокое давление. После выхода через нагнета­тельный клапан второй ступени воздух снова охлаждается и по­дается в баллон сжатого воздуха.

Компрессор имеет жесткий картер, в котором устанавливают три рамовых подшипника коленчатого вала. Блок цилиндров имеет сменные цилиндровые втулки. К движущимся частям компрессора относятся поршни, шатуны и цельный двухколенный коленчатый вал. Сверху на блок цилиндров устанавливается головка цилиндра первой ступени, а на нее — головка цилиндра второй ступени. В обеих головках помещаются всасывающие и нагнетательные кла­паны. Приводимый от коленчатого вала цепным приводом масля­ный зубчатый насос обеспечивает подачу смазки к рамовым под­шипникам, а через сверления в коленчатом валу — к обоим шатун­ным подшипникам. Вода для охлаждения компрессора подается от собственного насоса или от системы охлаждения в машинном отделении. Вода поступает в блок цилиндров, в котором помещаются холодильники обеих ступеней, в головку первой ступени, а затем в головку второй ступени. Предохранительный клапан на блоке цилиндров служит для предотвращения то ния в случае, если разорвется трубка холодильника и сжатый воздух цачнет поступать в полость охлаждения. Воздушные предохра­нительные клапаны устанавливают на выходе воздуха из первой и второй ступеней. Клапаны рас­считываются на 10%-ное избы­точное давление. На выходе из холодильника второй ступени ус­танавливается плавкая предохра­нительная пробка для контроля за температурой подаваемого компрессором воздуха, благодаря чему осуществляется защита воздушных баллонов и трубопроводов от чрезмерно нагретого воздуха.

На холодильниках устанавливают краны продувки. При их открытии компрессор разгружается и воздуха не подает. При пуске компрессор должен работать без нагрузки. В этом случае пусковой момент будет небольшим, а воздушные каналы будут очищаться от накопившейся влаги, которая может оказывать отрицательное воз­действие на смазку, вызывать образование водомасляной эмульсии внутри воздушных трубок, что в свою очередь может привести к воспламенению и взрыву в трубках.

После пуска приводного электродвигателя частота вращения вала/компрессора постепенно увеличивается. В это время необхо­димо следить за тем, чтобы давление смазочного масла поднялось до заданного значения. Прекращается продувка холодильника пер­вой, а затем второй ступени, и компрессор начинает работать. Про­веряют краны к манометрам

ступеней, чтобы показания маномет­ров были правильными. Если продувка холодильников осуществ­ляется вручную, то краны продувки необходимо периодически при­открывать для удаления влаги из холодильника. Во время работы , компрессора периодически контролируется подача охлаждающей; воды и температура воздуха, воды и масла.

При остановке компрессора вначале открывают краны продув­ки первой и второй ступеней, а затем дают компрессору поработать на холостом ходу в течение 2—3 мин. За это время холодильники очищаются от конденсата. После этого двигатель компрессора оста­навливают, а краны продувки оставляют открытыми. Если компрес­сор останавливают на длительное время, разобщительные клапаны охлаждения компрессора следует закрыть.

В последнее время на судах компрессоры работают обычно в автоматическом режиме. В этом случае требуется лишь немного дополнительного оборудования. Необходимо наличие разгрузочного устройства, которое гарантировало бы пуск компрессора без на­грузки, и включение его под нагрузку лишь после того, как будет достигнута необходимая частота вращения.

3.Передача мощности на гребной винт происходит посредством вращения гребного вала.

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями. 1 — муфте; 2 — редуктор; 3 — валопровод; 4 — гребной винт

В зависимости от типа главного двигателя различают дизель- и турбоэлектрические энергетические установки. В дизель-электрической энергетической установке генераторы приводятся в действие ДВС; в корме судна установлены электродвигатели, которые в большинстве случаев непосредственно соединены с судовыми движителями. Эти двигатели позволяют использовать нереверсивные судовые высоко- и среднеоборотные дизели и обеспечивают гибкую работу всего блока, так как дизели, генераторы и электродвигатели можно комбинировать любым образом. Кроме того, имеется возможность наиболее целесообразного размещения двигателей в средней и носовой части судна, а также достижения наиболее экономичной работы приводных двигателей при различных режимах движения. Дизель-электрические установки являются наиболее распространенными. Чаще всего их применяют на специальных судах, таких как ледоколы, рыболовные буксиры, противопожарные, плавучие краны, землечерпательные снаряды, паромы. На рисунке ниже показаны схемы дизель-электрических энергетических установок: ледокола с двумя и четырьмя пропульсивными электродвигателями в корме и для буксиров. Из рисунка видно, что передача мощности от первичного к пропульсивному двигателю иногда может осуществляться через механический редуктор.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Судовые передачи мощности

К важнейшим составным частям судовых энергетических установок относятся элементы передачи мощности. Под этим понимаются все элементы, участвующие в передаче крутящего момента от коленчатого вала или ротора в турбинах к гребному винту. Типовая дизельная энергетическая установка с двумя среднеоборотными дизелями показана на рисунке. Она включает в себя муфты, одноступенчатый редуктор, валопровод и гребной винт.

Дизель-редукторная энергетическая установка со среднеоборотными дизелями. 1 — муфте; 2 — редуктор; 3 — валопровод; 4 — гребной винт

В энергетических установках с малооборотными дизелями редуктор отсутствует, в турбинных и энергетических установках с высокооборотными дизелями ставят двух- и трехступенчатые редукторы. В дизель- и турбоэлектрических энергетических установках предусмотрены электродвигатели. Муфта соединяет узлы, выполняющие вращательные движения. Муфта предназначена для передачи крутящего момента от ведущего вала к ведомому, а также для сглаживания незначительных продольных, радиальных, угловых отклонений и крутильных колебаний. В зависимости от конструкции, назначения и принципа действия различают жесткие (глухие), упругие, фрикционные, гидродинамические и электромагнитные муфты. В судовых установках встречаются все виды муфт в зависимости от типа, мощности и конструкции главного двигателя. В установках, не имеющих передаточных механизмов (например, в малооборотных дизелях), чаще всего применяют жесткие муфты (рис. а, b). Фланцы жесткой муфты в разогретом состоянии запрессованы на вал или на конус и дополнительно зафиксированы призматической шпонкой. В энергетических установках с редуктором связь между редуктором и двигателем, а также с валом гребного винта осуществляется со стороны двигателя чаще всего через соединительную муфту, а со стороны гребного винта — через разобщительную. На рис. е показана упругая муфта. Она состоит из двух оснований, соединенных между собой гибкими прокладками, изготовленными из специальной резины. Такие муфты винтами крепятся к фланцам вала. Они могут передавать моменты независимо от направления вращения. За счет гибких вкладышей возможно выравнивание при перекашивании валов относительно друг друга. Работа гидродинамических муфт основывается на гидравлическом принципе, схематично показанном на рис. с. Это можно представить себе так: насос, приводимый в движение двигателем, отсасывает жидкость из резервуара, и нагнетает ее в турбину. Жидкость под определенным давлением протекает через лопатки турбины, приводя ее в движение, и затем течет обратно в резервуар. При одинаковых размерах роторов насоса и турбины агрегат работает как гидравлическая муфта, при различных — он превращается в гидротрансформаторную передачу, позволяющую изменять частоту вращения ведомого вала. На практике роторы насосов и турбин находятся в специальном корпусе (рис. d). Действие гидродинамической муфты основывается на энергообмене между двумя полумуфтами (рис. d) с помощью рабочей среды и циркуляции жидкости. Эта циркуляция возникает только в том случае, когда первичная сторона и турбина имеют равные частоты вращения. У гидравлических муфт, используемых на судах, это скольжение составляет от 1,5 до 3%.

Судовые муфты. а, b — жесткие (глухие) муфты: 1 — полумуфта; 2 — фланец; 3 — шпоночная канавка со шпонкой. с — схема гидромуфты: 1, 2 — насосы; 3 — цистерна. d — схема гидромуфты (турбо-муфты); е — гибкая муфта. 4 — фланец; 5 — элемент муфты. f — электромагнитная муфта.

В судовых главных двигателях довольно часто применяют также электромагнитные индукционные скользящие муфты. Принцип действия подобной муфты состоит в использовании вращающего момента, возникающего вследствие воздействия вращающегося магнитного поля на индукционные токи. Внутренняя часть муфты расположена на ведущем вале. Обмотки полюсов через щетки и контактные кольца питаются постоянным током. Внешняя часть муфты имеет обмотку в виде беличьей клетки. Когда внешняя часть, приводимая в движение двигателем через вал, начинает вращаться и возбуждается, она вместе с валом, связанным с ней и ведущим, например, к редуктору, попадает в область вращения магнитного поля. За счет этого в обмотке типа беличьей клетки этой части муфты возникают индукционные токи. Эти токи, взаимодействуя с силовыми линиями магнитного поля, обусловливают возникновение момента вращения, вследствие чего внешняя часть муфты начинает вращаться вместе с внутренней. Таким образом вращение, мощность и момент вращения передаются от двигателя к валу редуктора. Часть муфты с обмоткой типа беличьей клетки должна — аналогично гидродинамической и электромагнитной муфте — вращаться медленнее, чем вращающееся магнитное поле, так как при одинаковой скорости вращения обеих частей не могли бы возникнуть индуктированные токи и передача вращающего момента была бы невозможна. Поэтому и в данном случае имеет место так называемое скольжение муфты. Редуктор главного двигателя должен передавать момент вращения и так изменять его частоту вращения, чтобы она имела оптимальную величину, необходимую для нормальной работы гребного винта. На судах чаще всего применяют механические редукторы, состоящие из зубчатых колес. С введением планетарного редуктора появилась возможность значительно уменьшить размеры и общую массу. В последнее время на новых судах все чаще используют планетарные редукторы в энергетических установках со среднеоборотными дизелями, газовыми или паровыми турбинами.

Механический судовой редуктор: а — суммирующий; b — планетарный. 1 — вал турбины высокого давления; 2 — вал турбины низкого давления; 3, 5, 8, 9 — центральные солнечные шестерни; 4 — водило; 6 — свободный эпицикл; 7 — вал; 10 — тормозной эпицикл; 11 — свободное водило; 12 — полый вал; 13 — зубчатые колеса (3-я ступень); 14 — приводное зубчатое колесо гребного вала; 15 — гребной вал; 16 — гребной винт.

ищу работу

Валопровод соединяет приводной двигатель с гребным винтом. Гребной вал, который в зависимости от расположения машинного отделения на судне может состоять из одной или нескольких соединенных через глухие муфты частей, должен передавать момент вращения двигателя на гребной винт. Гребной вал опирается на радиальные подшипники. Концевая часть проходит в уплотнительном сальнике, который предохраняет туннель гребного вала от попадания морской воды. На конусообразной концевой части гребного вала закреплен гребной винт (рис. а). Осевое давление, действующее со стороны гребного винта и передаваемое дальше через вал, воспринимается упорным подшипником. Принцип действия упорного подшипника изображен на рис. d-е. Такой подшипник старого типа состоит из взаимодействующего с опорными поверхностями гребня давления; опорные поверхности залиты металлом. На переднем ходу функционирует одна поверхность гребня давления, на заднем — другая.

Валопровод: а — общий вид; b — полумуфта; с — упорный подшипник; d, e — принцип действия упорного подшипника. 1 — гребной вал; 2 — сальник; 3 — полу- подшипник; 6 — переборочный сальник; 7 — муфта; 4 — промежуточный вал; 5 — опорный упорный подшипник; 8 — упорный вал.

1. .Запірні вентилі у холодильних установках повинні встановлюватися на кожному (перелічить,де необхідно)

2.Трюмно-балластна система. Призначення, принципова схема, які насоси обслуговують систему.Особливості конструкції насосів. Можливі труднощі при роботі системи.

3. Швартовні пристрої. Призначення, конструкція. Вимоги Регистру. ПТЕ.

1.На всмоктуючому і нагнітальному трубопроводі компресора (за відсутності на нім вбудованих замочних вентилів);вхідному і вихідному патрубках фреонового устаткування (ресівера, випарника, конденсатора та ін.) неагрегатованих машин.

2. Изолированный балласт — это забортная вода, принятая в изолиро­ванные балластные танки, имеющие автономную систему выкачки и отдель­ные, только для этой цели насосы, сбрасывается за борт без ограничения.

Чистый балласт - это забортная вода, принятая в изолированные бал­ластные танки или тщательно вымытые грузовые танки, выкачиваемая за борт через общую балластную систему, общими балластными насосами, вне особых районов, на ходу судна, за 12 мильной зоной.

Нефтезагрязненный балласт - это забортная вода, принятая в грузо­вые танки, и выкачиваемая за борт через общую балластную систему общими батластными насосам», вне особых районов за 50 мильной зоной через от­стойный танк, под контролем САЗРИУС.

Балластная система

Данная система служит для придания судну необходимых море­ходных и эксплуатационных качеств изменением осадки, крена и дифферента Балластными системами, используемыми для изменения осадки, оборудуют оборудуют суда внутреннего и смешанного плава­ния (река—море). Прием балласта (перед выходом в море) приводит к увеличению осадки,- что в свою очередь повышает остойчивость судна и снижает ветровую нагрузку, улучшая управляемость. Балластировку на буксирных судах применяют также в целях сохранения наивыгоднейшей (расчетной) осадки, изменяющейся но­мере расхода запасов топлива, и обеспечения работы движителя с максимальным к. п. д. Балластной системой оборудуют нефтеналив­ные суда.

В группу балластных систем входят креновые и дифферентные системы. Креновые системы служат для устранения или компенсации кренящих моментов, возникающих от несимметрично расположен­ных грузов относительно диаметральной плоскости судка. Эти сис­темы характерны главным образом для специальных судов.

Дифферентными системами оборудуют грузовые и ледокольные суда. Дифферент в корму, который создается у грузовых судов при плавании порожнем, снижает устойчивость их на курсе и затрудняет управляемость. Нежелательный дифферент устраняют, принимая воду в носовые балластные цистерны.

Креново-дифферентная система является неотъемлемой частью нефтеналивных судов, на которых ее используют для придания крена и дифферента, необходимых при погрузке и выгрузке нефте­продуктов.

Балластная система состоит из цистерн (отсеков) для водяного балласта; насосов и трубопроводов для его приема и выкачки; измери­тельных труб или других средств для контроля количеста принятого балласта; воздушных труб для обеспечения входа воздуха в бал­ластные цистерны и выхода из них. Балластные цистерны стремятся располагать возможно ниже, что способствует повышению остойчивости судна и облегчает их наполнение (при расположении цистерн ниже ватерлинии они могут быть наполнены самотеком) К балластной системе предъявляют следующие основные требования: она должна обеспечивать заполнение и опорожнение любой одной цистерны или одновременно нескольких или всех цистерн, а также при необходимости перекачку балласта из одной цистерны в другую; устройство ее должно исключать возможность попадания воды из-за борта, так и из балластных цистерн в другие цис­терны и отсеки.

Для размещения балластных цистерн обычно используют форпик и ахтерпик, на судах с двойным дном — отсеки междудонного пространства. Типовая схема балластной системы показана на рисунке. Для облегчения всасывания приемники на трубах изготовляют в виде раструбов. Сетки и грязевые коробки на приемных трубах из балластных танков не устанавливают.

3.По характеристике снабжения

NC = L (B+H)+k∑lh

находят по Правилам Регистра массу якорей, длину и калибр d якор­ных цепей. Глубина заложения якоря обычно бывает известной. Как уже указывалось ранее, фактически принятая длина цепи не должна быть меньше определяемой по формуле: