- •Электромеханика
- •§ 20.4. Уравнения напряжений синхронного генератора
- •§ 20.5. Векторные диаграммы синхронного генератора
- •§ 3.1. Трехобмоточные трансформаторы
- •Глава 1 • Рабочий процесс трансформатора
- •§ 1.1. Назначение и области применения трансформаторов
- •§ 1.2. Принцип действия трансформаторов
- •§1.3. Устройство трансформаторов
- •Параллельная работа синхронных генераторов.
- •§ 21.1. Включение генераторов на параллельную работу.
- •§ 1.11. Опытное определение параметров схемы замещения трансформаторов
- •§ 20.6. Характеристики синхронного генератора
- •Уравнения напряжений трансформатора
- •Уравнения магнитодвижущих сил и токов
- •§ 14.4. Круговая диаграмма асинхронного двигателя
- •§ 6.2. Принцип действия асинхронного двигателя
- •Глава 24
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 24.2. Устройство коллекторной машины постоянного тока
- •§ 28.1. Основные понятия
- •§ 21.4. Колебания синхронных генераторов
- •§ 1.2. Принцип действия трансформаторов
- •§ 19.2. Типы синхронных машин и их устройство
- •§ 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •§ 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- •§ 24.1. Принцип действия генератора и двигателя постоянного тока
- •§ 23.1. Синхронные машины с постоянными магнитами
- •§ 23.2. Синхронные реактивные двигатели
- •§ 23.3. Гистерезисные двигатели
- •§ 23.4. Шаговые двигатели
- •§ 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- •§ 23.6. Индукторные синхронные машины
- •§ 10.1. Режим работы асинхронной машины
- •§ 6.1. Принцип действия синхронного генератора
- •Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- •§ 1.15. Регулирование напряжения трансформаторов
- •§ 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- •§ 1.14. Потери и кпд трансформатора
- •§ 19.1. Возбуждение синхронных машин
- •§ 2.2. Параллельная работа трансформаторов
- •§ 20.8. Потери и кпд синхронных машин
- •§ 3.2. Автотрансформаторы
- •Частота вращения ротора асинхронного двигателя
- •§ 1.13. Внешняя характеристика трансформатора
- •§ 1.7. Векторная диаграмма трансформатора
- •§ 5.2. Трансформаторы для выпрямительных установок
- •§ 5.3. Трансформаторы для автоматических устройств
- •§ 5.4. Трансформаторы для дуговой электросварки
§ 5.2. Трансформаторы для выпрямительных установок
Во вторичные обмотки этих трансформаторов включены вентили — устройства, обладающие односторонней проводимостью.
Рассмотрим работу однофазного трансформатора в схеме однополупериодного выпрямления (рис. 5.3, а). Ток во вторичной обмотке этого трансформатора i2 является пульсирующим, так как он создается только положительными полуволнами вторичного напряжения U2(рис. 5.3, б). Этот пульсирующий ток имеет две составляющие: постоянную
(5.2)
и переменную
(5.3)
Пренебрегая током х.х. и учитывая (5.3), уравнение МДС рассматриваемого трансформатора можно записать в виде
(5.4)
Рис. 5.3. Трансформатор в схеме выпрямления
В первичную обмотку трансформируется лишь переменная составляющая вторичного тока (5.3), поэтому МДС Idw2остается неуравновешенной и создает в магнитопроводе трансформатора постоянный магнитный поток Фd, называемый потоком вынужденного намагничивания. Этот поток вызывает дополнительное магнитное насыщение элементов магнитопровода; для того чтобы это насыщение не превышало допустимого значения, необходимо увеличить сечение сердечников и ярм. Эта мера приводит к увеличению расхода стали и меди, т. е. ведет к повышению габаритов, веса и стоимости трансформатора. Этот недостаток однофазной однополупериодной схемы распространяется и на трехфазную однополупериодную схему при соединении вторичной обмотки трансформатора по схеме «звезда—звезда с нулевым выводом» (рис. 5.3, в). В этом случае магнитный поток вынужденного намагничивания Фd значительно меньше, так как, действуя одновременно во всех трех стержнях магнитопровода, он замыкается вне магнитопровода — через медь, воздух, стенки бака — аналогично третьим гармоникам основного магнитного потока (см. рис. 1.26). Однофазную однополупериодную схему применяют лишь для маломощных выпрямителей, что объясняется не только недостатком, вызванным наличием потока Фd, но и значительными пульсациями выпрямленного тока. Трехфазная однополупериодная схема соединения вторичной обмотки в звезду с нулевым выводом также ограничивается выпрямителями небольшой мощности. Если же вторичную обмотку соединить в равноплечий зигзаг с нулевым выводом (см. рис. 1.22), то недостатки однополупериодной схемы выпрямления, обусловленные возникновением потока Фd, устраняются. Объясняется это тем, что при соединении в равноплечий зигзаг (см. § 1.8) на каждом стержне оказываются две вторичные катушки со встречным соединением. При трехфазной однополупериодной схеме ток Id проходя по всем фазам вторичной обмотки, создает в каждом стержне два потока Фd/2, но так как эти потоки направлены в разные стороны, то они взаимно уравновешиваются. Это достоинство схемы соединения обмоток в зигзаг позволяет применять трехфазную однополупериодную схему при значительных мощностях.
В двухполупериодных схемах, когда ток во вторичной цепи трансформатора создается в течение обоих полупериодов, условия работы трансформатора оказываются намного лучше и неуравновешенной МДС не возникает.
Другим обстоятельством, нежелательно влияющим на работу трансформаторов в схемах выпрямления, является несинусоидальная форма токов в обмотках. В результате в первичной и вторичной обмотках появляются токи высших гармоник, ухудшающие эксплуатационные показатели трансформатора, в частности снижающие его КПД.
Количественно влияние различных причин на работу трансформаторов в схемах выпрямления зависит от ряда факторов: схем выпрямления, наличия сглаживающего фильтра, характера нагрузки.
В связи с тем что первичный и вторичный токи трансформаторов имеют разные действующие значения (из-за их несинусоидальности), расчетные мощности первичной и вторичной обмоток одного и того же трансформатора неодинаковы (S1ном ≠ S2ном).Поэтому для оценки мощности трансформатора, работающего в выпрямительной схеме, вводятся понятия типовой мощности
(5.5)
и коэффициента типовой мощности
(5.6)
где выходная мощность, т. е. мощность, поступающая в потребитель постоянного тока,
(5.7)'
в номинальном режиме (при номинальных напряжениях Udномитоке Idном).
Типовая мощность трансформатора всегда больше его выходной мощности, т.е. kт>1. Объясняется это тем, что при любой схеме выпрямления U2>Udи I2>Id
Из этого следует, что габариты и вес трансформаторов для выпрямителей всегда больше, чем у трансформаторов такой же выходной мощности, но при синусоидальных токах в обмотках. Это объясняется тем, что в трансформаторах, работающих в выпрямительных схемах, полезная мощность определяется постоянной составляющей вторичного тока Idа нагрев обмоток — полным вторичным I2 и первичным I1 токами, содержащими высшие гармонические.
При выборе трансформатора для выпрямительной установки или же при его проектировании необходимо знать значение коэффициента kТ.
Значение переменного напряжения на выходе вторичной обмотки трансформатора, необходимого для получения заданного номинального значения постоянного напряжения Udном, определяется выражением
(5.8)
где kU— коэффициент напряжения.
Значения коэффициентов напряжения kuи типовой мощности kт для некоторых наиболее распространенных схем выпрямления приведены ниже.
Схемы выпрямляния |
kU |
kT |
Однофазная однополупериодная Однофазная двухполупериодная мостовая Однофазная двухполупериодная с нулевым выводом Трехфазная с нулевым выводом Трехфазная мостовая |
2,22 1,11 1,11 0,855 0,427 |
3,09 1,23 1,48 1,345 1,05 |
Сравнение различных схем выпрямления показывает, что лучшее использование трансформатора обеспечивается в мостовых схемах выпрямления, для которых коэффициент kT имеет минимальные значения.
