Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мой реферат философия()(.doc
Скачиваний:
8
Добавлен:
19.08.2019
Размер:
108.54 Кб
Скачать

1.3. Гносеологический смысл понятия «система»

У истоков гносеологической линии находится древнегреческая философия и наука. Данное направление дало две ветви в разработке понимания системы. Одна из них связана с трактовкой системности самого знания, сначала философского, затем научного. Другая ветвь была связана с разработкой понятий «закон» и «закономерность» как ядра научного знания.

Принципы системности знания разрабатывались еще в древнегреческой философии и науке. По сути, уже Евклид строил свою геометрию как систему, и именно такое изложение ей придал Платон. Однако применительно к знанию термин «система» античной фи­лософией и наукой не использовался.

Хотя термин «система» был упомянут уже в 1600 г., никто из ученых того времени его не использовал. Серьезная разработка проблемы системности знания с осмыслением понятия «система» начинается лишь с XVIII века. В то время были выявлены три важнейших требования к системности знания, а значит, и признака системы:

  • полноту исходных оснований (элементов, из которых выводятся остальные знания);

  • выводимость (определяемость) знаний;

  • целостность построенного знания.

Причем под системой знания это направление имело в виду не зна­ния о свойствах и отношениях реальности (все попытки онтологического понимания си­стемы забыты и исключены из рассмотрения), а как определенную форму организации знаний.

Гегель, при разработке универсальной системы знания и универсальной системы мира с позиций объективного идеализма, преодолел такое разграничение онтологической и гносеологической линий. В целом к концу XIX в. полностью отбрасываются онтологические основания познания, причем система порой рассматривается как результат деятельности субъекта познания.

Однако понятие «система» так и не было сформулировано потому, что знание в целом, как и мир в целом, представляют собой бесконечный объект, принципиально не соотносимый с по­нятием «система», что являлось способом конечного представления бесконечно сложного объекта.

В результате развития гносеологического направления с понятием «си­стема» оказались прочно связаны такие признаки, как целое, полнота и выводимость. Одновременно был подготовлен отход от понимания системы как глобального охвата мира или знания. Проблема системности знания постепенно сужается и трансформируется в проблему системности теорий, проблему полноты формальных теорий.

4 Разработка сущности системы в естественных науках

Не в философии, а в самой науке существовала гносеологическая линия, которая, разрабатывая сущность понимания системы, долгое время вообще не использовала этого термина.

С момента зарождения цель науки состояла в нахождении зависимостей между явлениями, вещами и их свойствами. Начиная с математики Пифагора, через Г. Галилея и И. Ньютона в науке формируется понимание того, что установление всякой закономерно­сти включает следующие шаги:

  • нахождение той совокупности свойств, которые будут необходимы и достаточны, чтобы образовать некоторую взаимосвязь, закономерность;

  • поиск вида математической зависимости между этими свойствами;

  • установление повторяемости, необходимости этой закономерности.

Поиск того свойства, которое должно войти в закономерность, часто длился веками (если не сказать - тысячелетиями). Одновременно с поиском закономерностей всегда возникал вопрос об основаниях этих закономерностей. Со времен Аристотеля зависимость должна была иметь причинное основание, однако еще теоремы Пифагора содержали другое основание зависимости - взаимоотношение, взаимообусловленность величин, не содержащую причинного смысла.

Эта совокупность вошедших в закономерность свойств образует некоторую единую, целостную группу именно в силу того, что она обладает свойством вести себя детерминировано. Но тогда эта группа свойств обладает признаками системы и является не чем иным, как «системой свойств» - это название ей и будет дано в XX в. Только термин «система уравнений» давно и прочно вошел в научное употребление. Осознание всякой выделенной зависимости как системы свойств наступает при попытках дать определение понятию «система». Дж. Клир определяет систему как совокупность переменных[6], а в естественных науках традиционным становится определение динамической системы как системы описывающих ее уравнений.

Важно, что в рамках данного направления разработан важнейший признак системы – признак самоопределяемости, самодетерминации входящего в закономерность набора свойств.

Таким образом, в результате развития естественных наук были выработаны такие важнейшие признаки системы как полнота набора свойств и самодетерминированность этого набора.

5. ОДИН ПОДХОД К ОБЩЕЙ ТЕОРИИ СИСТЕМ.

Гносеологическая линия истолкования системности знания, значительно разработав смысл понятия «система» и ряд его важнейших признаков, не вышла на путь понимания си­стемности самого объекта познания. Напротив, укрепляется положение, что система знания в любых дисциплинах образуется путем логического выведения, наподобие математики, что мы имеем дело с системой высказываний, имеющей гипотетико-дедуктивную основу. Это привело с учетом успехов математики к тому, что природа стала заменяться математи­ческими моделями. Возможности математизации определяли как выбор объекта исследо­вания, так и степень идеализации при решении задач.

Выходом из сложившейся ситуации явилась концепция Л. фон Берталанфи, с общей теории систем которого началось обсуждение мно­гообразия свойств «органичных целых». Систем­ное движение стало по сути своей онтологическим осмыслением свойств и качеств на разных уровнях организации и типов обеспечивающих их отношении, а Б.С. Флейшман положил в основу системологии упорядочение принципов усложняющегося поведения: от вещественно-энергетического баланса через гомеостаз к целенаправленности и перспективной активности[7].

Таким образом, происходит поворот к стремлению рассматривать объект во всей сложности, множественности свойств, качеств и их взаимосвязей. Соответственно образуется ветвь онтологических определений системы, которые трак­туют ее как объект реальности, наделенный определенными «системными» свойствами, как целостность, обладающую некоторой организующей общностью этого целого. Посте­пенно формируется употребление понятия «система» как сложного объекта, органи­зованной сложности. Одновременно с этим «математизируемость» перестает быть тем фильтром, который предельно упрощал задачу. Дж. Клир видит принципиальное отличие между классическими науками и «наукой о системах» в том, что теория систем формирует предмет исследования во всей полноте его естественных проявлений, не приспосабливая к возможностям формального аппарата[6].

Впервые обсуждение проблем системности явилось саморефлексией системных кон­цепций науки. Начинаются небывалые по размаху попытки осознать сущность общей теории систем, системного подхода, системного анализа и т.д. и прежде всего - выработать само понятие «система». При этом в отличие от многовекового интуитивного использования главной целью становятся методологические установления, которые должны вытекать из понятия «система».

В 1959 г. в Кейсовском технологическом институте (Кливледнд шт.Огайо) был создан центр исследования систем или, точнее, системных исследований, объединивший отделы исследования операций, вычислительной техники и автоматики. Перед этим научным коллективом, который возглавил известный специалист по автоматике проф. Д.Экман (трагически погибший в результате автомобильной катастрофы в 1962 г.), были поставлены весьма широкие и сложные задачи. Центр должен был приступить к разработке качественно новых методов анализа, синтеза и изучения сложных или больших систем, создать методологию системных исследований, способствовать развитию общей теории больших систем.

Очевидно, что только для формирования конкретной программы работы центра нужно было приложить немалые усилия. С этой целью весной 1960 г. был созван первый симпозиум под девизом «Системы – исследование и синтез», на котором известные учёные, представляющие различные дисциплины, выдвинули ряд проблем в области системных исследований. Труды этого симпозиума были изданы в 1961 г.

В 1963 г. состоялся второй симпозиум, проходивший под девизом «Взгляды на общую теорию систем».

Один из докладчиков второго симпозиума был У.Чёрчмен, который выступил со своими аксиомами, отражающие его взгляды на общую теорию систем.

Аксиоматический подход Чёрчмена к об­щей теории систем показался мне достаточно интересным и я решил его изложить.

Автор убеждён, что все интересующиеся общей теорией систем стремятся рассмотреть все возможные подходы к этому направлению, ибо в противном слу­чае это увлекательное теоретическое начинание поро­дило бы лишь ничтожный замкнутый кружок бес­плодных схоластов.

Цель предлагаемых аксиом заключается в посту­лировании следующих утверждений: 1) системы пред­ставляют собой комплексы, которые можно синтези­ровать и оценивать; 2) прилагательное «общая» в выражении «общая теория систем» относится как - к «теории», так и к самим «системам». Аксиомы формулируются следующим образом.

1.Системы синтезируются и конструируются. Не­обходимым условием синтеза является способность к оценке. Следовательно, системы можно оценивать и предлагаемые альтернативные варианты можно срав­нивать с исходным с точки зрения того, являются ли они лучше или хуже этого варианта. Если выразить эту мысль более точно, то можно задать целевую функцию для оценки качества альтернативных систем на которую наложена система ограничений, представляющих в свою очередь определенные цели, которых стремится достичь конструктор.

«Конструирование» включает практическую реализацию синтезированной системы, а также изменение структуры и параметров на основе накопленного опыта.

При такой интерпретации систем из рассмотрения исключаются астрономические, механические и тому подобные системы. В таком случае системы синтезируются для описания событий и эти системы отвечают первой аксиоме, так как их можно синтезировать и конструировать.

2. Системы синтезируются по частям. Конструктор разбивает общую задачу синтеза на множество частных задач, решение каждой из которых определяет составную часть более крупной системы.

3. Компоненты систем также являются системами. Это означает, что каждый компонент можно оценивать и разрабатывать в указанном выше смысле. Это означает также, что каждый компонент можно рассматривать как состоящий из более мелких компонентов и что процесс такого расчленения логически бесконечен, хотя на практике конструктор останавливается по своему усмотрению на каком-то уровне, считая компоненты, соответствующие этому уровню, «элементарными блоками системы».

4. Система замкнута, если её оценка не зависит от характеристик окружающей её среды, которая относится к определённому классу сред. Смысл этой аксиомы сводится к тому, что конструктор стремится получить некоторую устойчивую систему сохраняющую свои свойства даже при изменении условий окружающей среды. Если конструктор считает, что возможные изменения в окружающей среде способны ухудшить функционирование системы, то в ходе разработки он будет стремится синтезировать такую систему, которая устойчива к этим возмущениям.

Когда можно полагать, что все возможности такого рода в достаточной мере учтены, конструктор считает со­зданную систему замкнутой. Как правило, он и не пытается учесть все возможные изменения в окру­жающей среде. Если же он встал бы на эту точку зрения, то в таком случае справедлива аксиома:

5. Обобщенная система есть замкнутая система, остающаяся замкнутой во всех возможных средах. Иными словами, обобщенная система характеризует­ся абсолютной устойчивостью к изменениям окружаю­щей среды.

Вопросы, возникающие в связи с обобщенными системами, напоминают известные философские про­блемы. Прежде всего, сколько элементов содержится в классе обобщенных систем? Если ответить на этот вопрос — «ни одного», мы приходим к философскому анархизму. При ответе—«один» приходим к фило­софскому монизму, соответствующему, например, уче­нию стоиков, Спинозы, Лейбница и некоторых других философов. Если же ответ гласит — «много», то мы сталкиваемся с философским плюрализмом. Далее возникает вопрос, является ли обобщенная система добром или злом. Автор считает, что кон­структоры систем должны четко высказаться в том смысле, что системы можно создавать как во имя добра, так и во имя зла. Нет никаких разумных осно­ваний проводить различия между задачами построе­ния систем, отвечающих научным критериям совер­шенства, и задачами создания систем, несущих в себе добро и зло. При построении систем на их создателя в равной мере возложена ответственность за исполь­зование всего арсенала научных знаний и технических средств, а также приемлемых этических критериев при построении системы. Тем не менее могут возник­нуть опасения. Я считаю, что если человеку когда-либо удастся создать некоторую подлинно замкнутую обобщенную систему, то в итоге она явится не добром, а злом. Следующие две аксиомы выражают убеждения у. Чёрчмена по этим вопросам.

6. Существует одна и только одна обобщённая система (монизм).

7. Эта обобщенная система оптимальна.

Наиболее общей задачей синтеза систем является приближение к некоторой обобщенной системе. Ины­ми словами:

8. Общая теория систем есть, методология поиска обобщенной системы. И в заключение:

9. Поиск обобщенной системы становится все бо­лее затруднительным с течением времени и никогда не завершится (реализм). [7]

ЗАКЛЮЧЕНИЕ

Системное осмысление реальности, системный подход к теоретической и практической деятельности – является одним из прин­ципов диалектики, так же как и категория «система»  это одна из категорий диалектического материализма. Се­годня понятие «система» и принцип системности стали иг­рать важную роль в жизнедеятельности человека. Дело в том, что общее прогрессивное движение науки, знания про­исходит неравномерно. Всегда выделяются определенные участки, развивающиеся быстрее других, возникают ситуа­ции, требующие более глубокого и детального осмысления, а следовательно, и особого подхода к исследованию нового состояния науки. Поэтому выдвижение и усиленная разра­ботка отдельных моментов диалектического метода, способ­ствующих более глубокому проникновению в объективную реальность, вполне закономерное явление. Метод познания и результаты познания взаимосвязаны, воздействуют друг на друга: метод познания способствует более глубокому проникновению в суть вещей и явлений; в свою очередь, на­копленные знания совершенствуют метод.

В соответствии с текущими практическими интересами человечества меняется познавательное значение принципов и категорий. Подобный процесс отчетливо наблюдается когда под влиянием практических потреб­ностей происходит усиленная разработка системных идей.

Системный принцип в настоящее время, выступает в качестве элемента диалек­тического метода как системы и выполняет свою специфи­ческую функцию в познании наряду с другими элементами диалектического метода.

В настоящее время принцип системности – необхо­димое методологическое условие, требование любого иссле­дования и практики. Одной из его фундаментальных харак­теристик является понятие системности бытия, а тем са­мым и единства наиболее общих законов его развития.

В ходе научно-технической революции проблема создания больших систем и управления этими системами стала центральной проблемой как в самой науке, так и в развитии общества. Всё народное хозяйство в целом, отдельные его отрасли и звенья, промышленные предприятия и научно-исследовательские учреждения, технические объекты самой различной природы, программы разработки и осуществления крупных проектов, короче говоря, бесчисленное разнообразие можно и часто просто необходимо рассматривать как большие системы.

Дело в том, что при изучении больших систем приходится анализировать огромное богатство связей элементов и явлений, подвергать их всестороннему исследованию, учитывать взаимодействие частей и целого, неопределённость поведения системы, её связи и взаимодействие с окружающей средой. Системы этого класса выступают, как правило, в виде сложных человеко-машинных систем, для синтеза и управления которыми необходимо привлечение всего арсенала методов и средств самых различных отраслей науки и техники. Увы, этот на первый взгляд неисчерпаемый арсенал часто оказывается недостаточным для решения системных задач на том уровне, которого требуют нужды современного общества.

Проблема осложняется ещё и тем, что в отличие от традиционных постановок задач в точных науках, при изучении больших систем, возникают чрезвычайно сложные задачи научного обоснования и формирования таких критериев, а также согласования критерия функционирования всей системы с критериями для отдельных её частей, которые в свою очередь, как правило, являются достаточно сложными системами.

ЛИТЕРАТУРА

  1. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4

  2. Заварзин Г.А. Индивидуалистический и системный подход в биологии // Вопросы философии, 1999, №4.

  3. Философия: Учебн. Пособие для студентов вузов. / В.Ф. Берков, П.А. Водопьянов, Е.З. Волчек и др.; под общ. ред. Ю.А. Харина. Мн., 2000.

  4. Уемов А.И. Системный подход и общая теория систем. – М., 1978.

  5. Садовский В. Н. Основания общей теории систем. М., 1974

  6. Клир Дж. Системология. Автоматизация решения системных задач. М., 1990.

  7. Исследование систем. Материалы всесоюзного симпозиума. М.Д. Ахундов - М., 1971.

5