Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
контр раб 1,2.doc
Скачиваний:
4
Добавлен:
18.08.2019
Размер:
884.22 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Камский институт инженерных и гуманитарных технологий

АВЕРЬЯНОВ В.Е., ПОРЦЕВА Л.И., БАРАНОВА Н.А.

МАТЕМАТИКА

УЧЕБНО-ПРАКТИЧЕСКОЕ ПОСОБИЕ

Задания контрольной работы

ИЖЕВСК 2005

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ И ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ

Основной формой обучения студента-заочника является самостоятельная работа над учебным материалом, которая состоит из следующих элементов: изучение материала по учебникам, решение задач, самопроверка, выполнение контрольных работ.

При выполнении и оформлении контрольных работ необходимо соблюдать

следующие правила:

1) контрольная работа выполняется в отдельной тетради, а не на листках, обязательно чернилами или шариковой ручкой (цвет чернил или пасты – любой, кроме красного) с полями шириной 4-5 см для замечаний рецензента;

2) на обложке тетради должны быть ясно написаны фамилия студента, его инициалы, учебный номер (шифр), номер контрольной работы и дата отсылки работы в институт;

3) в работу должны быть включены все задания. Задачи и их решения располагаются в порядке возрастания номеров, перед решением задачи должен быть записан ее номер и ее условие. Условие задачи переписывается полностью, без сокращения слов.

4) решение задачи должно начинаться со слова “Решение”. Само решение должно представлять собой связный текст, а не голый набор формул и преобразований, причем пояснительный текст должен быть минимально необходимым. Окончательный результат решения задачи необходимо выделить с предшествующим ему словом “Ответ”.

4) Если в работе имеются ошибки, студент должен выполнить все требования преподавателя, изложенные в рецензии, и отправить работу с исправлениями на повторную проверку. Поэтому рекомендуется при выполнении контрольной работы оставлять в конце тетради несколько чистых листов для их исправления и дополнения.

5) Никакие исправления в тексте уже проверенной работы не допускаются. Все исправления записываются после рецензии преподавателя с указанием номера задачи, к которой они относятся.

6) В случае незачета работы и отсутствия прямого указания рецензента на то, что студент может ограничиться представлением исправленных решений отдельных задач, вся работа должна быть выполнена заново.

Контрольные работы, выполненные с нарушением изложенных требований или выполненные студентами не по своему варианту, не засчитываются и возвращаются без проверки.

Контрольные работы должны выполнятся самостоятельно. Несамостоятельно выполненная работа не дает возможности преподавателю-рецензенту указать студенту на недостатки в его работе, в усвоении им учебного материала; в результате чего студент не приобретает необходимых знаний и может оказаться неподготовленным к устному зачету и экзамену.

Каждую контрольную работу после проверки студент предъявляет к защите.

На защите студент должен объяснить и, в случае необходимости, защитить свое решение, ответить на поставленные преподавателем вопросы по решенным в работе задачам. Без предъявления защищенных работ студент не допускается к сдаче зачета и экзамена.

Список рекомендуемой литературы Основная

  1. Аверьянов В.Е., Никулин В.А., Понамарев В.А. Математика: Учеб. Пособие / Под ред. В.А. Никулина.- Ижевск, КИГИТ, 2004.

  2. Баврин И.И., Матросов В.Л. Общий курс высшей математики. – М.: Просвещение, 1995.

  3. Данко П.Е.,Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2 ч. Учебное пособие для вузов – М.: Высшая школа, 1999.

  4. Шипачев В.С. Высшая математика. Учебник для вузов. - М.:Высшая школа,2003.

Дополнительная

  1. Бронштейн И.Н., Семендяев К.А. Справочник по математики для инженеров и учащихся втузов. М.: Наука, 1980.

  2. Высшая математика для экономистов / Н.Ш. Кремер, Б.А. Путко, И.М. Тришин, М.Н. Фридман. – М.: ЮНИТИ, 2000.

  3. Беклкмемишев Д.В. Курс аналитической геометрии и линейной алгебры. – М.: Наука, 1976.

  4. Никольский С.М. Курс математического анализа. – М.: Наука, 1983. – Т.1.

  5. Баврин И.И. Курс Высшей математики. – М.: Просвещение, 1992.

Пример 1.

Дана система трех линейных уравнений с тремя неизвестными. Доказать ее совместност ь и решить тремя способами: 1) с помощью формул Крамера; 2) методом матричного исчисления; 3) методом Гаусса.

1) x1 - 5х2 + 2х3 = 6

3x1 - х2 - х3 = - 3

-2x1 + 2х2 + 3х3 = 3

Решение .Вычислим определитель системы.

= = 1∙(-1)∙3 + (-5)∙(-1)∙(-2) + 2∙3∙2 - 2∙(-1)∙(-2) – (-5)∙3∙3 - 1∙(-1)∙2=42.

Так как ∆≠0, то система совместна и имеет единственное решение.

Найдем 1, ∆2,∆3, - определители третьего порядка, полученные из определителя системы ∆ заменой 1, 2 и 3-го столбца соответственно столбцом свободных членов.

1 = = - 42, 2 = = -42, ,3 = = 42.

Подставляя найденные значения определителей в формулы Крамера, получаем искомое решение системы: х1=1/∆=-1, х2= ∆2/∆=-1, х3= ∆3/∆= 1.

Сделаем проверку.

-1 - 5∙ (-1) + 2∙1 = 6 - верно,

3∙(-1) – (-1) – 1 = -3 - верно,

-2∙(-1) + 2∙(-1) + 3∙1 = 3 - верно.

Ответ: х1=-1, х2= -1, х3= 1.

2) Решим систему методом Гаусса.

x1 - 5х2 + 2х3 = 6

3x1 - х2 - х3= - 3

-2x1 + 2х2 + 3х3 = 3

Расширенная матрица системы имеет вид . Преобразуем расширенную матрицу системы следующим образом.

Шаг 1. 1-ю строку умножая на (- 3), 2 и прибавляя полученные строки соответственно ко второй, третьей строкам, исключим переменную x1 из второй и третьей строк .

Шаг 2. 2-ю строку умножая на 4 и прибавяя к 3-ей, исключим из нее переменную х2.

Таким образом , имеем:

Используя обратный ход метода Гаусса найдем

из 3-го уравнения : 3 = 3 х3 = 1

из 2 -го уравнения : 2 - х3 = -3 2 - 1 = -3 х2 = -1

из 1 -го уравнения : x1 - 5х2 + 2х3 = 6 x1 + 5 + 2 = 6 x1 = -1

Ответ: х1=-1, х2= -1, х3= 1.

3). Решим систему уравнений матричным методом. Здесь

A = ; Х= ; В= .

Так как определитель матрицы системы отличен от нуля: |A| = 42 , то матрица А имеет обратную. Для нахождения обратной матрицы А-1 вычислим алгебраические дополнения элементов матрицы А и составим матрицу из алгебраических дополнений

||Ai j|| = . Транспонируем матрицу из алгебраических дополнений ||Ai j ||T = . Разделив каждый элемент транспонированной матрицы на определитель, получим обратную матрицу А-1=1/42 .

Умножив слева обратную матрицу на матрицу столбец свободных членов, получим искомую матрицу столбец неизвестных: Х=А-1∙В или

Х= = 1/42 = 1/42 = .

Ответ: х1=-1, х2= -1, х3= 1.

Пример 2. Даны вершины А1(3; -2; 2), А2(1; -3; 1), А3(2; 0; 4),А4(6; -4: 6). Средствами векторной алгебры найти:

1) длину ребра А1 А2

2) угол между ребрами А1 А2 и А1 А3

3) площадь грани А1А2А3

4) объем пирамиды А1А2А3А4

Решение. 1) Находим вектор А1А2:

=(1 - 3)i + (-3 – (-2))j +(1 – 2)k= - 2i - 1j - k .

Длину вектора, т.е. длину ребра А1А2 найдем по формуле

2) Найдем координаты вектора =(2 – 3)i +(0 –(- 2))j +(4 -2)k= - i + 2j + 2k .

Скалярное произведение векторов и находим по формуле

=(-2) ∙ (-1) + (-1) ∙ 2 + (-1) ∙ 2 = - 2, а косинус угла между ними – по формуле: .

Отсюда следует, что φ – тупой угол, φ=π – arccos0,27 = 1,85 рад с точностью до 0,01. Это и есть искомый угол между ребрами А1 А2 и А1 А3 .

3) Площадь грани А1А2А3 равна половине площади параллелограмма, построенного на векторах и , т.е. половине модуля векторного произведения этих векторов:

x = .

Здесь определитель вычисляется с помощью разложения по первой строке. Следовательно,

.

4) Объем V пирамиды равен 1/6 объема параллелепипеда, построенного на векторах

, и . Вектор =3 i - 2j + 4k . Используя формулу

.

Пример. Найти центры и привести к каноническому виду и построить кривые :

1) 2 x2 + 3 y2 - 4x + 6y - 7 = 0 ;

2) 2 x y = a2

Решение 1). B = 0, = -72 0 , = 6 > 0 - эллипс

Выполним приведение к полному квадрату: 2 (x - 1)2 + 3 (y + 1)2 - 12 = 0

Координаты центра симметрии ( 1; - 1), линейное преобразование X = x - 1, Y = y + 1 приводит уравнение к каноническому виду X2 /6 + Y2 /4 = 1 , где a = 2.48 ,b = 2

2). B = 1, = a2 0 , = - 1 < 0 - гипербола

Центр системы координат находится в центре симметрии кривой, т.к. в уравнении нет линейных членов. Совершим поворот осей на угол .. По формуле ( 45 ) имеем tg 2 = B/(A - C) = , т.е. = 450. Коэффициенты канонического уравнения ( 46 ) A+ , C+ определяются уравнением ( 48 ) : t2 = 1 или t1,2 = 1 A+ = 1, C+ = -1, т.е. X2 - Y2 = a2 или X2 / a2 - Y2 / a2 = 1

У равнение 2х у = а2 описывает гиперболу с центром в (0;0). Оси симметрии располагаются по биссектрисам координатных углов, асимптотами служат оси координат, полуоси гиперболы равны а.