Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задание 26.docx
Скачиваний:
11
Добавлен:
16.08.2019
Размер:
192.78 Кб
Скачать

Вопрос 2 (Виды трасс геологоразведочных скважин. Основы выбора трассы скважины) Выбор и обоснование трассы скважины.

Положение оси скважины в пространстве называется трассой скважины.

Трассы разведочных скважин различаются на прямолинейные, криволинейные и комбинированные и по направлению относительно вертикали; кроме того, скважина может быть однозабойной или многозабойной.

Прямолинейные скважины проектируются в наиболее простых геологических разрезах, как правило, в однородных породах с перпендикулярным пересечением осью скважины границ пластов. Направление прямолинейных скважин могут быть любыми, и соответственно скважины называются: вертикальные (вниз), наклонные, горизонтальные и восстающие (в том числе вертикальные вверх). Рис. 2

Рис.2

Выбор направления скважины обуславливается наиболее полным решением геологических задач. Самая точная информация о породах пласта (структура, мощность пласта) получается при пересечении скважиной пласта в крест простирания, т.е. под углом 90º .

Криволинейные трассы, как и прямолинейные, могут иметь любое направление и различаются ' на искривленные с постоянной кривизной, с переменной кривизной, с искривлением в двух направлениях, и комбинированные сочетающие прямолинейные и криволинейные участки. (Рис. 3)

Рис.3

Скважины, при бурении которых из одного основного ствола проходятся еще один или несколько дополнительных стволов, называются многозабойными. Трассы основного и дополнительных стволов многозабойных скважин могут быть весьма многообразны, располагаться в одной или нескольких плоскостях, количество дополнительных стволов достигает 20. (Рис. 4)

Рис.4

Наряду с многозабойными скважинами в практике разведочного бурения применяется многоствольное бурение (неправильно многоствольная скважина), когда с одной площадки (за- счет поворота шпинделя станка) одним буровым станком последовательно проходятся несколько скважин под разными углами (рис 5)

Рис 5

Такое решение дает существенный экономический эффект при бурении не очень глубоких скважин в труднодоступной местности, позволяя экономить на прокладке транспортных путей и оборудовании площадок.

При выборе и проектировании трассы скважины необходимо оперировать основными терминами и координатами, определяющими положение оси скважины в пространстве (Рис. 6).

Рис.6

Положение участков трассы скважины в упрощенном виде определяется расстоянием от устья скважины и двумя углами - угол между касательной к оси скважины в данной точке и вертикалью называется зенитным углом (θ), угол между горизонтальной проекцией к оси скважины и выбранным направлением (обычно направлением Север-Юг) называется азимутальным углом или просто азимутом скважины в данной точке –(α).

Проекция оси скважины на вертикальную плоскость называется профиль скважины, а проекция оси на горизонтальную поверхность называется планом или инклинограммой скважины.

Если трасса скважины лежит в одной вертикальной плоскости, то она называется плоскоискривленной, в противном случае скважина – пространственно-искривленная. К плоскоискривленным относятся все прямолинейные скважины.

Выбор трассы скважины:

1. Выбор между одноствольной и многозабойной скважиной. При этом, прежде всего, играет роль экономическая целесообразность и необходимость решения геологических задач. Необходимо сравнить получаемый выигрыш (эффект) за счет сокращения метража бурения, снижение перевозок буровой установки и объема монтажных работ при многозабойной скважине по сравнению с бурением соответствующего числа однозабойных скважин для решения той же геологической задачи, с дополнительными затратами и трудностями технологии при бурении многозабойной скважины. Особо важную роль в настоящее время начинают играть вопросы охраны природы - при каждой перевозке и монтаже буровой наносится серьезный ущерб природе - это обязательно надо учитывать.

2. Если выбрана одноствольная скважина, определяется ее направление: вертикальная, наклонная, горизонтальная, восстающая. С точки зрения трудозатрат, они возрастают в том порядке, как названы направления. Естественно, что наиболее легко проходятся вертикальные скважины, наклонные скважины уже требуют дополнительных технических условий горизонтальное бурение требует специального оборудования для спуско-подъема; наиболее трудоемко бурение восстающих скважин. Таким образом, выбор направления скважины отличного от вертикального, должен быть обоснован геологической необходимостью или расположением точки заложения скважины (крутой склон, подземная горная выработка и т.п.)

3. Следующий шаг - определение прямолинейности или криволинейности трассы скважины. В наиболее простых геологических разрезах обычно выбирается прямолинейная трасса. Однако в большинстве геологических разрезов на поведение трассы скважины в процессе бурения действуют различные геологические и технологические факторы, вызывающие искривление ствола скважины, и скважина становиться криволинейной независимо от нашей воли. В таких случаях можно бороться с искривлением скважины и добиваться ее прямолинейности, но это бывает весьма сложно и дорого. Гораздо выгоднее предусмотреть естественное искривление и спроектировать трассу скважины криволинейной. Криволинейная трасса проектируется и с целью решения определенных задач и может быть более эффективной, чем прямолинейная. Например, при подсечении скважиной крутопадающих пластов прямолинейная наклонная скважина должна закладываться с большим зенитным утлом, что создает технические трудности кроме того, протяженность такой скважины будет больше чем у криволинейной (L1>L2) (Рис 7)

Рис. 7.

Другой пример эффективности криволинейной скважины при необходимости попасть в точку, расположенную под недоступным местом (водоем, застройка и т.п.) Рис. 8.

Рис.8

В практике эксплуатационного бурения используются криволинейные скважины, конечная часть которых, входящая в продуктивный пласт, приближается горизонтальному положению и проходит вдоль пласта, что увеличивает возможности добычи полезного ископаемого. (Рис. 9).

Рис.9

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]