
- •Передмова
- •1 Нафтогазова механіка як наука, її розвиток та зв'язок з іншими дисциплінами
- •Контрольні запитання
- •2 Стан розвитку нафтогазової галузі та проблеми нафтогазовидобутку
- •2.1 Короткі відомості про земну кору
- •Контрольні запитання
- •3 Природні колектори нафти і газу та їх основні властивості
- •3.1 Гранулометричний склад порід-колекторів
- •Контрольні запитання
- •3.2 Пористість
- •3.2.1 Залежність пористості від кладки зерен, тиску та температури
- •3.3 Неоднорідність колекторських властивостей пласта
- •3.4 Фізико-механічні властивості гірських порід
- •3.5 Теплові властивості гірських порід
- •3.6 Акустичні властивості гірських порід
- •Контрольні запитання
- •3.7 Проникність
- •3.7.1 Абсолютна проникність
- •3.7.2 Проникність тріщинуватих порід
- •3.7.3 Залежність проникності від пористості та розміру пор
- •3.7.4 Фазова (ефективна) проникність
- •3.7.5 Відносна проникність
- •3.8 Питома поверхня гірських порід
- •Контрольні запитання
- •4 Пластові вуглеводні
- •4.1 Склад та фізичні властивості нафт
- •4.1.1 Густина пластової нафти
- •4.1.2 В’язкість пластової нафти
- •4.1.3 Структурно-механічні властивості аномально-в’язких нафт
- •4.1.4 Фотоколориметрія нафти
- •Контрольні запитання
- •4.2 Природний газ. Склад та властивості природного газу
- •4.2.1 Склад та класифікація природних газів
- •4.2.2 Фізико-хімічні властивості вуглеводневих газів
- •4.2.3 Стан та параметри газових сумішей
- •4.2.4 Вміст важких вуглеводнів у суміші
- •Контрольні запитання
- •5 Фазові перетворення вуглеводневих систем
- •5.1 Склад та характеристика рідкої суміші
- •5.2 Газовий конденсат
- •5.3 Газогідрати
- •Контрольні запитання
- •6 Склад та фізико-хімічні властивості пластових вод
- •6.1 Залишкова вода
- •6.2 Підземні води
- •6.3 Основні властивості пластових вод та параметри, що їх характеризують
- •Контрольні запитання
- •7 Молекулярно-поверхневі явища та капілярні процеси
- •Контрольні запитання
- •8 Режими роботи нафтових і газових покладів
- •8.1 Коефіцієнт нафтовилучення та чинники, що на нього впливають
- •8.2 Визначення нафтовилучення промисловими методами
- •8.3 Визначення нафтовилучення за допомогою лабораторних досліджень
- •Контрольні запитання
- •9 Призначення, напрямки розвитку і класифікація методів підвищення нафтовилучення пластів
- •9.1 Фізико-гідродинамічні методи підвищення нафтовилучення
- •9.1.1 Методи збільшення нафтовилучення, пов'язані з системою розробки нафтового покладу
- •9.1.2 Циклічна дія на пласт під час заводнення
- •9.1.3 Зміна напрямків фільтраційних потоків
- •9.1.4 Встановлення оптимальних величин репресії і депресії на пласт
- •9.1.5 Часткове зниження тиску нижче тиску насичення нафти
- •9.2 Фізико-хімічні методи підвищення нафтовилучення пластів
- •9.2.1 Методи для покращення заводнення
- •9.2.1.1 Застосування поверхнево-активних речовин
- •9.2.1.2 Застосування полімерів
- •9.2.1.3 Застосування лугів, кислот, пін, емульсій
- •9.2.2 Методи підвищення нафтовилучення
- •9.2.2.1 Застосування міцелярних розчинів
- •9.2.2.2 Застосування двоокису вуглецю
- •9.3 Газові методи збільшення нафтовилучення пластів
- •9.3.1 Застосування сухого вуглеводневого газу
- •9.3.2 Застосування збагаченого і зрідженого газу
- •9.3.3 Застосування газу високого тиску
- •9.3.4 Застосування інших газів і сумішей
- •9.3.5 Газоводяна дія на пласти
- •9.4 Теплові методи підвищення нафтовилучення пластів
- •9.4.1 Застосування нагрітої води
- •9.4.2 Застосування пари
- •9.4.3 Застосування внутрішньопластового горіння
- •9.5 Критерії застосування методів підвищення нафтовилучення
- •9.6 Ефективність застосування методів підвищення нафтовилучення пластів
- •9.6.1 Оцінка технологічного ефекту
- •9.6.2 Оцінка економічної ефективності впровадження методів підвищення нафтовилучення пластів
- •Контрольні запитання
- •Перелік використаних джерел
3.7.2 Проникність тріщинуватих порід
На відміну від тріщинної пористості, що, звичайно, мало впливає на величину загальної пористості породи, тріщинна проникність може визначати величину загальної проникності. Тут тріщини можуть відігравати вирішальну роль у процесах фільтрації рідини та газу.
Тріщинні породи – це, звичайно, крихкі або тверді літологічні різновидності, міжзернова проникність яких становить тисячні долі мілідарсі. А між тим, з родовищ з такими колекторами у ряді випадків отримані значні припливи нафти чи газу.
За одиницю тріщинної проникності беруть величину, яка характеризується витратою в 1 м3/с флюїда в’язкістю в 1 Па∙с, що фільтрується через усі тріщини, котрі пересікають площину в 1 м2 тріщинної породи під дією градієнта тиску в 1 Па/м за умови перпендикулярності тріщин площині фільтрації.
Визначення величини тріщинної проникності спричиняє значні труднощі. Якщо є дані дослідження свердловин, то проникність тріщинної породи може бути встановлена за величиною коефіцієнта гідропровідності ε = k·h/μ або кривих відновлення тиску.
Якщо таких даних немає, то проникність може бути визначена методом мікроскопічного дослідження шліфів породи.
Тріщинна проникність тісно пов'язана
з тріщинною пористістю. Ця залежність
виражається рівнянням Буссінеска, у
відповідності з яким витрата рідини
,
яка припадає на одиницю довжини тріщини
(щілини), дорівнює:
-
(3.33)
Витрата рідини через площу фільтрації породи:
-
(3.34)
Виходячи з того, що тріщинна пористість
,
отримуємо, що
.
Звідси,
-
.
(3.35)
За законом Дарсі витрата рідини через таку породу становить:
-
.
(3.36)
Порівнявши витрати за рівняннями Буссінеска і Дарсі, отримуємо:
-
.
.
(3.37)
Після перетворень в мкм2 отримуємо:
-
kтр=8,45∙106∙b2∙mтр,
(3.38)
де mтр - пористість тріщинного колектора в долях одиниці;
b - ширина (розкритість) тріщин, м:
l - загальна довжина тріщин в полі зору мікроскопу, м;
F - площа зору мікроскопу, м2.
Одержані формули справедливі, якщо тріщини перпендикулярні поверхні фільтрації. Насправді тріщини розміщені довільно, тому kтр буде залежати від простирання їх систем і напрямку фільтрації. Орієнтованість тріщин визначається за азимутом падіння δ чи кутом падіння ω або направляючими косинусів одиничного вектора нормалі до площини тріщин cos α1, cos α2, cos α3. (α1, α2, α3 – кути між одиничними векторами і осями координат).
В загальному випадку, коли тріщини розміщені довільно, а проникність визначається для будь-якого горизонтального напрямку фільтрації, то
-
kтр = 8,5·106 Σbі Гі (sin2ωі·cos2φі + cos2ωі),
(3.39)
де bі і Гі - розкриття і густота тріщин, см і 1/см;
ωі – кут падіння тріщин даної системи;
φі – кут між заданим напрямком фільтрації і простиранням даної системи тріщин.
При мікроскопічних дослідженнях шліфа параметри тріщинуватості визначають за такими формулами:
-
; kтр = А∙b2∙mтр.
(3.40)
Параметр А залежить від геометрії систем тріщин в породі: для трьох взаємно перпендикулярних тріщин А = 2,28·106, а для хаотично розміщених тріщин А = 1,71·106.
Для визначення параметрів тріщинуватості використовують геологічні, геофізичні (електричні, гравітаційні, пружні) та гідродинамічні (результати дослідження свердловин) методи дослідження порід-колекторів.
Вивчення тріщинної проникності – важлива справа, оскільки в процесі розробки родовищ обводнення свердловин проходить нерівномірно.