- •Черчение, чертежи, начертательная геометрия
- •Вводная лекция 1
- •1.1. Виды изделий и их структура
- •Раздел 1.2
- •Раздел 1.3 cтадии pазpаботки коhстpуктоpской докумеhтации
- •Раздел 1.4
- •Раздел 1.5
- •Раздел 1.6
- •Раздел 1.7
- •Раздел 1.8
- •Особеhhости коhстpукций букв, цифp и зhаков
- •Раздел 1.9
- •Лекция 2 изображения
- •2.1. Виды
- •Раздел 2.2
- •Раздел 2.3
- •Раздел 2.4
- •Раздел 2.5
- •Раздел 2.6
- •Раздел 2.7
- •Раздел 2.8
- •Раздел 2.9
- •Лекция 3 условные графические изображения на чертежах
- •3.1. Условности и упрощения пpи выполнении изобpажений
- •Раздел 3.2
- •Раздел 3.3
- •Раздел 3.4
- •Раздел 3.5
- •Лекция 4 нанесение размеров
- •4.1. Основные виды механической обработки деталей
- •Раздел 4.2
- •Раздел 4.3 система простаhовки размеров
- •Раздел 4.4 методы пpостаhовки pазмеpов
- •Раздел 4.5 чертеж вала
- •Раздел 4.6 коhструктивhые элемеhты деталей
- •Раздел 4.7
- •Раздел 4.8
- •Раздел 4.9
- •Лекция 5 аксонометрические проекции
- •5.1. Виды аксонометpических пpоекций
- •Лекция 5 аксонометрические проекции
- •5.1. Виды аксонометpических пpоекций
- •Раздел 5.2
- •Постpоеhие аксоhометрической проекции окружhости
- •Диагpамма умhожеhия размеров hа коэффициеhты искажеhия
- •Раздел 5.3
- •Лекция 6 резьбы, резьбовые изделия и соединения
- •6.1. Геометрическая форма и основные параметры резьбы
- •Раздел 6.2
- •Раздел 6.3
- •Раздел 6.4
- •Раздел 6.5
- •Раздел 6.6
- •Болт 2м12х1,25-6gх60.58.35x.029 гост...
- •Лекция 7 разъемные соединения
- •7.1. Hеподвижные pазьемные соединения
- •Раздел 7.2
- •Раздел 7.3
- •Раздел 7.4
- •Раздел 7.5
- •Раздел 7.6
- •Раздел 7.7
- •Раздел 7.8
- •Лекция 8 неразъемные соединения, зубчатые передачи
- •8.1. Изобpажения и обозначения сваpных швов
- •Раздел 8.2
- •Осhовhые теpмиhы, опpеделеhия и обозhачеhия (гост 16530 - 83... Гост 16532 - 83)
- •Раздел 8.3
- •Раздел 8.4
- •Лекция 9 шероховатость поверхности
- •9.1. Нормирование шероховатости поверхности
- •Раздел 9.2
- •Раздел 9.3
- •Типовые пpимеpы выбоpа паpаметpов шеpоховатости в зависимости от вида обpаботки
- •Раздел 9.4
- •Раздел 9.5
- •Раздел 9.6
- •Пример простаhовки шероховатости поверхhостей литых, штамповаhhых деталей с последующей мехаhической обработкой
- •Лекция 10
- •10.1. Эскиз детали. Тpебования к эскизу
- •Раздел 10.2
- •Раздел 10.3
- •Раздел 10.4
- •Раздел 10.5
- •Раздел 10.6
- •4О гост 2591 - 71 Квадpат ----------------- 25 гост
- •Hазначение некотоpых маpок
- •Hазначение некотоpых маpок стали
- •Лекция 11 сборочный чертеж
- •11.1. Опpеделение сбоpочного чеpтежа
- •Раздел 11.2
- •Раздел 11.3
- •Раздел 11.4
- •Раздел 11.5
- •1. Документация (сбоpочный чеpтеж); 2. Сбоpочные единицы (если они есть); 3. Детали; 4. Стандаpтные изделия; 5. Матеpиалы (если они есть).
- •Раздел 11.6 условhости и упрощеhия на сборочhых чертежах
- •Лекция 12 деталирование чертежей
- •12.1. Чтение чертежа общего вида
- •Раздел 12.2
- •Раздел 12.3
- •Раздел 12.4
- •Литература
- •Метрические задачи (1) для самостоятельной работы студентов
- •1.1. Общие положения
- •1.2. Задачи на определение расстояний между геометрическими фигурами
- •1.3. Задачи на определение действительных величин плоских геометрических фигур и углов между ними
- •2.1. Задачи, выражающие отношения между фигурами
- •2.1.1. Относительное положение прямых
- •2.1.2. Относительное положение прямой и плоскости, двух плоскостей
- •2.1.3. Взаимно перпендикулярные прямые и плоскости
- •Проекции прямого угла
- •Прямая, перпендикулярная к плоскости
- •Линии наибольшего наклона
- •Частные случаи
- •Взаимно перпендикулярные прямые общего положения
- •Взаимно перпендикулярные плоскости
- •Общие положения
- •1. Способ замены плоскостей проекций
- •Замена фронтальной плоскости проекций (преобразование системы п2/п1 в систему п4/п1)
- •Замена горизонтальной плоскости проекций (преобразование системы п2/п1 в систему п2/п4)
- •Основные задачи, решаемые способом замены плоскостей проекций
- •6.1. Общие положения
- •6.2. Примеры решения комплексных задач
Основные задачи, решаемые способом замены плоскостей проекций
Задача 1. Преобразовать прямую общего положения (рис. 3.7) в линию уровня (горизонталь или фронталь). Р ис. 3.7
Решение. Для решения задачи необходимо заменить плоскость проекций П1, или П2 новой плоскостью проекций П4, параллельной прямой l и перпендикулярной к незаменяемой плоскости проекций. Для того чтобы прямая l в новой системе плоскостей проекций стала, например, фронталью, заменяем фронтальную плоскость проекций П2 новой плоскостью П4 П1 и параллельной прямой l. Построение на комплексном чертеже (рис. 3.7). 1) проводим новую ось проекций х14 параллельно l1 на произвольном расстоянии от нее; такое положение оси х14 обусловливается тем, что П4 параллельна l. В частном случае, если плоскость П4 проведена непосредственно через прямую l, ось х14 = l1; 2) выберем на прямой l две точки А(А1А2) и В(В1В2); 3) построим проекции точек А и В на плоскости П4; 4) прямая l4 (А4, В4) является проекцией прямой l на плоскость П4. Прямая l(A,B) в новой системе плоскостей проекций П1/П4 является фронталью. Примечания: 1. Отрезок [АВ] прямой l проецируется на плоскость П4 в истинную величину, т.е. | А4В4 | = | АB | 2. - величина угла наклона прямой l к плоскости П1.
Подумайте и решите задачу 1 в безосной системе изображения. Преобразуйте прямую l так, чтобы она стала в новой системе плоскостей проекций горизонталью. 3адача 2. Преобразовать линию уровня в проецирующую прямую. Решение. Допустим, что заданная линия уровня (рис. 3.9) является горизонталью h(h1,h2). Р ис. 3.9
Для решения задачи заменяем плоскость П2 исходной системы П2/П1 плоскостью П4 h, при этом плоскость П4 будет перпендикулярна П1 так как h П1 и образует с ней новую систему плоскостей проекций П1/П4. Построения на комплексном чертеже: 1) проводим новую ось проекций х14 1; такое положение оси обусловливается тем, что П4 h; 2) выберем на прямой h две точки А(А1,А2) и В(В1,В2); 3) построим проекции точек А и В на плоскости П4; так как расстояния точек А и В до плоскости П1 одинаковы, то проекции их на плоскости П4 совпадут, т. е. h4 = А4 = В4. Прямая h(h1,h4) в новой системе плоскостей проекций является фронтально проецирующей.
Задайте самостоятельно комплексный чертеж фронтали f и преобразуйте ее в проецирующую прямую. Подумайте и решите задачу 2 в безосной системе изображений.
Прямую общего положения преобразовать в проецирующую заменой только одной плоскости проекций нельзя, так как плоскость П4 перпендикулярная прямой, не будет перпендикулярна ни одной из старых плоскостей проекций, и, следовательно, не образует ни с одной из них прямоугольной системы плоскостей проекций. Для того чтобы прямую общего положения преобразовать в проецирующую, необходимо выполнить две последовательные замены плоскостей проекций. Вначале прямую следует преобразовать в линию уровня, а затем линию уровня преобразовать в проецирующую. На рис. 3.10 показано преобразование прямой l общего положения в горизонтально проецирующую. Прямую l общего положения преобразуйте во фронтально проецирующую (чертеж задайте самостоятельно). 3адача 3. Преобразовать плоскость общего положения в проецирующую (рис. 3.11) Решение. Для решения задачи необходимо заменить плоскость П1 или П2 исходной системы П2/П1 новой плоскостью П4, перпендикулярной плоскости (АВС). Две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную к другой плоскости. Следовательно, если какую-либо прямую, принадлежащую плоскости , преобразовать в проецирующую, то плоскость в новой системе плоскостей проекций станет проецирующей. Проще всего для этой цели воспользоваться линией уровня (см. задачу 2). Р ис. 3.11
На чертеже плоскость (АВС) преобразована во фронтально проецирующую (см. рис. 3.11) путем преобразования горизонтали h(h1,h2), принадлежащей плоскости , во фронтально проецирующую прямую (см, задачу 2). Все построения, выполненные на комплексном чертеже, cделаны на основе материала данного параграфа. В новой системе плоскостей проекций П1/П4 плоскость является фронтально проецирующей ( 4), и поэтому ее проекция на П4 вырождается в прямую линию 4 (С4, А4, В4). - величина угла наклона плоскости к плоскости П1. Преобразуйте плоскость общего положения Г в горизонтально проецирующую (исходный чертеж задайте самостоятельно). 3адача 4. Преобразовать проецирующую плоскость Г в плоскость уровня. Решение. Допустим, что заданная плоскость Г является фронтально проецирующей (рис. 3.12). Заменим плоскость П1 новой плоскостью проекций П4, параллельной плоскости Г(АВС) и, следовательно, перпендикулярной незаменяемой плоскости П2. В новой системе плоскостей проекций П2/П4 плоскость Г(АВС) станет горизонтальной плоскостью уровня. Р ис. 3.12
Построения на комплексном чертеже: 1) проводим новую ось проекций х24 параллельно А2С2 на произвольном от нее расстоянии; такое положение оси проекций х24 обусловливается тем, что П4 параллельна Г(АВС). Ось х24 совпадает с прямой (А2С2), если плоскость П4 совмещается с плоскостью Г(АВС); 2) построим проекции точек А, В и С на плоскость П4; 3) треугольник А4В4С4 является проекцией треугольника АВС на плоскость П4. Примечание. Так как плоскость треугольника АВС параллельна плоскости П4, то А4В4С4 АВС. Преобразуйте горизонтально проецирующую плоскость во фронтальную плоскость уровня (исходный чертеж задайте самостоятельно). Примечание. Плоскость общего положения преобразовать в плоскость уровня заменой только одной плоскости проекций нельзя, так как плоскость П4, параллельная ей, не будет перпендикулярна ни одной из старых плоскостей проекций и, следовательно, не образует ни с одной из них прямоугольной системы плоскостей проекций. Для того чтобы плоскость общего положения преобразовать в плоскость уровня, необходимо выполнить две последовательные замены плоскостей проекций. Р ис. 3.13
Вначале плоскость необходимо преобразовать в проецирующую, а затем проецирующую плоскость преобразовать в плоскость уровня. На рис. 3.13 показано преобразование плоскости (АВС) в горизонтальную плоскость уровня. Преобразуйте плоскость общего положения во фронтальную плоскость уровня (исходный чертеж задайте самостоятельно).
5.4. ЗАДАЧИ НА ПОСТРОЕНИЕ В ПЛОСКОСТИ ОБЩЕГО ПОЛОЖЕНИЯ ГЕОМЕТРИЧЕСКИХ ФИГУР ПО ЗАДАННЫМ РАЗМЕРАМ
Общей схемой решения задач этой группы является: 1) преобразование заданной плоскости общего положения в плоскость уровня; 2) решение в плоскости уровня заданной метрической задачи; 3) перенесение решения на исходные проекции обратным преобразованием. Наиболее целесообразным при решении задач оказывается применение способа замены плоскостей проекций и вращения вокруг линии уровня.
Пример. Вписать окружность в треугольник АВС (рис. 5.2). Р ис.5.2
Алгоритм: 1. Преобразовать треугольник АВС в плоскость уровня способом замены плоскостей проекций. 2. В плоскости уровня построить вписанную в треугольник окружность. 3. Обратным преобразованием построить проекции окружности в исходной системе плоскостей проекций. Построения. Для преобразования плоскости треугольника АВС в плоскость уровня выполнены две последовательные замены плоскостей проекций: вначале плоскость треугольника АВС преобразована в проецирующую, затем проецирующая плоскость преобразована в плоскость уровня. Построены проекции вписанной окружности в системе плоскостей проекций П4/П5. Проекции окружности в системе плоскостей проекций П1/П2, являющиеся эллипсами, построены по сопряженным диаметрам 1 - 2 и 3 - 4. На чертеже отмечены также точки касания окружности и сторон треугольника АВС.