
- •Черчение, чертежи, начертательная геометрия
- •Вводная лекция 1
- •1.1. Виды изделий и их структура
- •Раздел 1.2
- •Раздел 1.3 cтадии pазpаботки коhстpуктоpской докумеhтации
- •Раздел 1.4
- •Раздел 1.5
- •Раздел 1.6
- •Раздел 1.7
- •Раздел 1.8
- •Особеhhости коhстpукций букв, цифp и зhаков
- •Раздел 1.9
- •Лекция 2 изображения
- •2.1. Виды
- •Раздел 2.2
- •Раздел 2.3
- •Раздел 2.4
- •Раздел 2.5
- •Раздел 2.6
- •Раздел 2.7
- •Раздел 2.8
- •Раздел 2.9
- •Лекция 3 условные графические изображения на чертежах
- •3.1. Условности и упрощения пpи выполнении изобpажений
- •Раздел 3.2
- •Раздел 3.3
- •Раздел 3.4
- •Раздел 3.5
- •Лекция 4 нанесение размеров
- •4.1. Основные виды механической обработки деталей
- •Раздел 4.2
- •Раздел 4.3 система простаhовки размеров
- •Раздел 4.4 методы пpостаhовки pазмеpов
- •Раздел 4.5 чертеж вала
- •Раздел 4.6 коhструктивhые элемеhты деталей
- •Раздел 4.7
- •Раздел 4.8
- •Раздел 4.9
- •Лекция 5 аксонометрические проекции
- •5.1. Виды аксонометpических пpоекций
- •Лекция 5 аксонометрические проекции
- •5.1. Виды аксонометpических пpоекций
- •Раздел 5.2
- •Постpоеhие аксоhометрической проекции окружhости
- •Диагpамма умhожеhия размеров hа коэффициеhты искажеhия
- •Раздел 5.3
- •Лекция 6 резьбы, резьбовые изделия и соединения
- •6.1. Геометрическая форма и основные параметры резьбы
- •Раздел 6.2
- •Раздел 6.3
- •Раздел 6.4
- •Раздел 6.5
- •Раздел 6.6
- •Болт 2м12х1,25-6gх60.58.35x.029 гост...
- •Лекция 7 разъемные соединения
- •7.1. Hеподвижные pазьемные соединения
- •Раздел 7.2
- •Раздел 7.3
- •Раздел 7.4
- •Раздел 7.5
- •Раздел 7.6
- •Раздел 7.7
- •Раздел 7.8
- •Лекция 8 неразъемные соединения, зубчатые передачи
- •8.1. Изобpажения и обозначения сваpных швов
- •Раздел 8.2
- •Осhовhые теpмиhы, опpеделеhия и обозhачеhия (гост 16530 - 83... Гост 16532 - 83)
- •Раздел 8.3
- •Раздел 8.4
- •Лекция 9 шероховатость поверхности
- •9.1. Нормирование шероховатости поверхности
- •Раздел 9.2
- •Раздел 9.3
- •Типовые пpимеpы выбоpа паpаметpов шеpоховатости в зависимости от вида обpаботки
- •Раздел 9.4
- •Раздел 9.5
- •Раздел 9.6
- •Пример простаhовки шероховатости поверхhостей литых, штамповаhhых деталей с последующей мехаhической обработкой
- •Лекция 10
- •10.1. Эскиз детали. Тpебования к эскизу
- •Раздел 10.2
- •Раздел 10.3
- •Раздел 10.4
- •Раздел 10.5
- •Раздел 10.6
- •4О гост 2591 - 71 Квадpат ----------------- 25 гост
- •Hазначение некотоpых маpок
- •Hазначение некотоpых маpок стали
- •Лекция 11 сборочный чертеж
- •11.1. Опpеделение сбоpочного чеpтежа
- •Раздел 11.2
- •Раздел 11.3
- •Раздел 11.4
- •Раздел 11.5
- •1. Документация (сбоpочный чеpтеж); 2. Сбоpочные единицы (если они есть); 3. Детали; 4. Стандаpтные изделия; 5. Матеpиалы (если они есть).
- •Раздел 11.6 условhости и упрощеhия на сборочhых чертежах
- •Лекция 12 деталирование чертежей
- •12.1. Чтение чертежа общего вида
- •Раздел 12.2
- •Раздел 12.3
- •Раздел 12.4
- •Литература
- •Метрические задачи (1) для самостоятельной работы студентов
- •1.1. Общие положения
- •1.2. Задачи на определение расстояний между геометрическими фигурами
- •1.3. Задачи на определение действительных величин плоских геометрических фигур и углов между ними
- •2.1. Задачи, выражающие отношения между фигурами
- •2.1.1. Относительное положение прямых
- •2.1.2. Относительное положение прямой и плоскости, двух плоскостей
- •2.1.3. Взаимно перпендикулярные прямые и плоскости
- •Проекции прямого угла
- •Прямая, перпендикулярная к плоскости
- •Линии наибольшего наклона
- •Частные случаи
- •Взаимно перпендикулярные прямые общего положения
- •Взаимно перпендикулярные плоскости
- •Общие положения
- •1. Способ замены плоскостей проекций
- •Замена фронтальной плоскости проекций (преобразование системы п2/п1 в систему п4/п1)
- •Замена горизонтальной плоскости проекций (преобразование системы п2/п1 в систему п2/п4)
- •Основные задачи, решаемые способом замены плоскостей проекций
- •6.1. Общие положения
- •6.2. Примеры решения комплексных задач
Взаимно перпендикулярные прямые общего положения
Если стороны прямого угла являются
прямыми общего положения, то прямой
угол на каждую из трех плоскостей
проекций (П1,П2, и П3)
проецируется с искажением (частные
случаи рассмотрены в начале главы). При
построении проекций такого угла следует
исходить из следующих положений:
1)
если две прямые взаимно перпендикулярны,
то через каждую из них можно провести
плоскость, перпендикулярную к другой
прямой;
2) если прямая перпендикулярна
к плоскости, то она перпендикулярна
любой прямой, принадлежащей этой
плоскости.
Таким образом, построение
взаимно перпендикулярных прямых общего
положения в конечном счете сводится к
построению плоскости, перпендикулярной
к заданной прямой общего положения.
Рассмотрим
решения некоторых задач.
1.
Построить прямую a, перпендикулярную
заданной прямой n общего положения.
Р
ис.
2.19
Чтобы построить прямую, перпендикулярную
к данной прямой, необходимо провести
плоскость, перпендикулярную к этой
прямой, и в этой плоскости провести
любую прямую.
Решение задачи дано на
чертеже (рис. 2.19). Через произвольную
точку А пространства проведена плоскость
(h
f)
n,
и в этой плоскости построена произвольная
прямая а(а1, а2). Прямая а
n,
так как а
n.
2.
Из точки А опустить перпендикуляр на
прямую b общего положения.
Решение
задачи дано на чертеже (рис. 4.20).
Р
ис.
2.20
Искомая прямая (АК)
b
является результатом пересечения двух
плоскостей: плоскости
b,
проходящей через точку А, и плоскости
,
проходящей через прямую b и точку А.
Задача относится к числу комплексных,
подробное объяснение ее решения дано
в разделе "Комплексные задачи".
Взаимно перпендикулярные плоскости
Если плоскость проходит через прямую линию, перпендикулярную к другой плоскости (или параллельна этой прямой), то она перпендикулярна к этой плоскости. Следовательно, плоскость , перпендикулярную данной плоскости , можно построить:
1) либо как плоскость, проходящую через прямую, перпендикулярную плоскости ; 2) либо как плоскость, перпендикулярную одной из прямых, принадлежащих плоскости .
В обоих случаях задача имеет бесчисленное
множество решений, если на плоскость
не
наложено каких-либо дополнительных
условий.
Р
ис.
4.21
На чертеже (рис. 4.21) плоскость (m n) (а b) проведена через прямую m(m1,m2), перпендикулярную плоскости (а b). Прямая n(n1,n2), пересекающая прямую m в точке М, выбрана произвольно. Примечание. Если требуется провести плоскость , перпендикулярную данной плоскости (а b) и проходящую через заданную прямую n(n1,n2), то плоскость является единственным решением. На чертеже (рис. 4.22) плоскость (h b) (a b) проведена перпендикулярно прямой b(b1,b2), принадлежащей плоскости , и задана поэтому горизонталью h[h1 b1, h2 (М1М2)] и фронталью f[f1 (М1М1), f2 b2]. Р ис. 4.22
Примечания: 1. Если плоскость (h f) провести перпендикулярно горизонтали, принадлежащей плоскости (а b), то плоскость расположится перпендикулярно к плоскостям и П1 т. е. будет горизонтально проецирующей. 2. Если плоскость (h f) провести перпендикулярно фронтали, принадлежащей плоскости (а b), то плоскость расположится перпендикулярно к плоскостям и П2, т. е. будет фронтально проецирующей. Плоскость, перпендикулярная одновременно двум заданным плоскостям, может быть построена: 1) либо как плоскость, перпендикулярная линии их пересечения; 2) либо как плоскость, проходящая через перпендикуляры к ним, построенные из одной точки пространства.
Методическая разработка для студентов технических специальностей
«СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА»
3.1. Общие положения 3.2. Способ замены плоскостей проекций 3.3. Способ вращения