
- •1. Предмет учебной дисциплины
- •Раздел I
- •2. Чем объясняется всеобщий характер законов природы?
- •3. Проблема двух культур — естественнонаучной и гуманитарной
- •5. Естественнонаучные картины мира
- •Раздел II История естествознания
- •6. Возникновение классической науки
- •7. Механистическая картина мира
- •8. Предпосылки научной революции в естествознании на рубеже XIX—XX вв.
- •9. Специфика неклассического естествознания
- •10. Особенности развития естествознания в современных
- •Раздел III Элементы современной физики
- •11. Роль концепции научной парадигмы при анализе развития естествознания
- •12. В чем преимущества концепции научно-исследовательских программ при анализе динамики развития науки?
- •13. Содержание понятия физической исследовательской программы
- •14. Какие типы физических исследовательских программ имени место в ходе развития естествознания?
- •15. Основные концепции механистической исследовательской программы
- •1. Концепция использования математики как языка физической науки.
- •2. Концепция пространственно-временных отношений в природе.
- •5. Детерминированность поведения физического объекта (строгая, однозначная причинно-следственная связь между конкретными состояниями объекта). Обратимость всех физических процессов.
- •17. Отличия инерциальных и неинерциальных систем отсчета. Принцип инерции
- •18. Принцип относительности Галилея
- •19. Понятие состояния физической системы.
- •23. Предпосылки возникновения специальной теории относительности Эйнштейна
- •24 Постулаты специальной теории относительности. Выводы из анализа преобразований Лоренца
- •1. Принцип относительности: все законы природы одинаковы во всех инерциальных системах отсчета.
- •2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.
- •25. Содержание трансдисциплинарных концепций релятивистской исследовательской программы
- •26. Мотивы создания общей теории относительности. Концепция инвариантности как трансдисциплинарная идея естествознания
- •27. Теорема Нетер. Законы сохранения
- •29. Концепция вероятностного детерминизма в статистической физике
- •30. Концепция необратимости. Понятие энтропии. Второй закон термодинамики
- •31. Проблема menловой смерти Вселенной
- •32. В чем смысл флуктуационной гипотезы, высказанной п. Больцманом?
- •33. Развитие взглядов на природу света. Форму па Планка
- •34. Фотон и его характеристики
- •36. Принцип неопределенностей Гейзенберга
- •37. Принцип дополнительности Бора
- •38. Концепция неопределенности
- •39. Парадокс Эйнштейна—Подольского - Розена
- •40. Состояние квантово-механической
- •И статистическими закономерностями квантовой механики
- •41. Релятивистская квантовая физика. Античастицы и виртуальные частицы
- •42. Физический вакуум в квантовой теории поля
- •45. Единая калибровочная природа различных типов физических взаимодействий
- •46. Спонтанное нарушение симметрии вакуума
- •Раздел IV Химия в системе естественных наук
- •49. Каковы место и роль химии в современной цивилизации?
- •50. Какие науки составляют фундаментальные основы современной химии?
- •51. В чем состоит особенность и двуединая задача современной химии?
- •52. Каковы концептуальные уровни современной химии?
- •53. Что есть понятия «химический элемент» и «химическое соединение» с точки зрения современности?
- •54. Что привнесло в развитие химии учение о химических процессах?
- •55. Эволюционная концепция в химии. Почему эволюционную химию можно назвать «предбиологией»?
- •56. В чем сущность химической эволюции и чем она заканчивается?
- •Раздел V Возникновение и эволюция жизни
- •57. Многогранность живого
- •58. Триединство концептуальных уровней познания в современной биологии
- •59. Структурные уровни организации живых систем
- •60. Развитие современной концепции биохимического единства всего живого
- •61. За счет чего функционирует энергетика живого?
- •62. Особенности термодинамики, самоорганизации и информационного обмена в живых системах
- •63. Роль генетического материала в воспроизводстве и эволюции живых организмов
- •64. Какие научные факты обосновывают эволюционность живого?
- •65. Исторически сформированные концепции происхождения жизни
- •66. Особенность условий на ранней Земле
- •67. Принципы биологической эволюции
- •Раздел VI Физиология
- •68. Основные концепции современной физиологии
- •69. Кровь
- •70. Система кровообращения
- •71. Лимфатическая система
- •72. Дыхательная система
- •73. Пищеварительная система
- •74. Обмен веществ и энергии
- •75. Физиология выделения
- •76. Железы внутренней секреции
- •77. Нервная система
- •78. Вегетативная нервная система
- •79. Высшая нервная деятельность
- •Раздел VII
- •82. Как современная наука определяет природу и сущность человека?
- •83. Что свидетельствует о сложности и многомерности внутреннего мира человека?
- •84. Истоки человеческой морали и этики
- •85. Какие запреты у биовидов считаются важнейшими?
- •86. Сравнительный анализ социальных структур и социального поведения животных и человека
- •87. Чем определяются мотивации человеческого поведения?
- •88. Гуманистические позиции биоэтики
- •89. Представляет пи опасность клонирование человека?
- •90. Какие факторы приводят к потере здоровья отдельного человека и популяции?
- •91. Что дают современные мировоззренческие знания дня понимания природы здоровья?
- •92. Основа организации и устойчивости биосферы
- •93. Эволюция биосферы
17. Отличия инерциальных и неинерциальных систем отсчета. Принцип инерции
Под системой отсчета понимается тело отсчета, относительно которого рассматривается движение, связанная с телом отсчета система координат (например, декартова система координат, состоящая из трех взаимно перпендикулярных пространственных координатных осей) и заданный способ определения времени.
Принцип инерции Галилея выделяет определенный класс систем отсчета, которые называют инерциальными. Инерциальными являются системы отсчета, в которых выполняется принцип инерции (Первый закон Ньютона). Общепринятая формулировка Первого закона Ньютона такова: «Существуют системы отсчета, относительно которых всякое тело сохраняет состояние своего движения (состояние покоя или равномерного прямолинейного движения), пока действие всех тел и полей на него компенсировано». Если мы имеем хотя бы одну такую инерциальную систему отсчета, то всякая другая система отсчета, которая движется относительно первой равномерно и прямолинейно, также является инерциальной. Все другие системы отсчета называются неинерциальными.
18. Принцип относительности Галилея
Принцип относительности Галилея: «Во всех инерциальных системах отсчета все физические явления происходят одинаково».
Выберем инерциальную систему отсчета (в которой выполняются законы Ньютона) и условно назовем ее покоящейся системой отсчета К. Рассмотрим другую инерциальную систему отсчета К, движущуюся относительно К равномерно и прямолинейно со скоростью U, причем оговоримся, что эта скорость много меньше скорости света. Пусть оси Х и Х' обеих рассматриваемых систем отсчета совпадают, а оси Y и Y'; Z и Z' соответствен, но параллельны (Мы всегда можем повернуть в пространстве соответствующим образом системы координат). Таким образом, система А"движется со скоростью U относительно К вдоль оси X. Положение некоторой точки (тела) в системах отсчета выражается значениями декартовых координат в соответствующих системах отсчета. Легко заметить, что между ними имеется следующая зависимость:
Х= Х'+ Ut,
y =y'. (1)
Z=Z'.
Если мы возьмем производную по времени от координат, то найдем выражение, связывающее скорости движения тела относительно обеих систем отсчета:
V- V' + U. (2)
Скорость относительно неподвижной системы отсчета складывается из скорости относительно подвижной системы отсчета и скорости самой системы отсчета.
Если теперь возьмем производную по времени от правой и левой части уравнения (2), то найдем выражение, связывающее ускорения тела относительно обеих систем отсчета. Так как система ^'движется равномерно и прямолинейно относительно К, и скорость U является постоянной величиной, то производная от U по времени равна 0, и мы получаем:
а = а' (3)
Уравнения (1), (2), (3) называются преобразованиями Галилея и описывают, как связаны между собой кинематические параметры движения тела при переходе из одной инерциальной системы отсчета в другую.
Тот факт, что ускорения тел относительно обеих инерциальных систем отсчета одинаковы, позволяет сделать вывод о том, что законы механики, определяющие причинно-следственные связи движения тел, одинаковы во всех инерциальных системах отсчета. И это составляет суть принципа относительности Галилея.
Беря производные по времени от кинематических параметров, мы рассматривали изменения этих величин за бесконечно маленькие промежутки времени. При этом нам представлялось само собой разумеющимся, что эти бесконечно маленькие промежутки времени, равно как и любые промежутки времени, одинаковы в обеих системах отсчета. Желая описать движение какого-либо тела, то есть получить уравнения зависимости координат тела от времени, мы некритически оперируем понятием времени. И так было вплоть до создания теории относительности Эйнштейна. Все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях. А отсюда два следствия, неявно присутствующих в наших рассуждениях: во-первых, что «правильно идущие часы» идут синхронно в любой системе отсчета; во-вторых, что временные интервалы, длительность событий одинакова во всех системах отсчета, что и выражено еще одним уравнением в преобразованиях Галилея, согласно которому
t = t'
Иными словами, мы пользуемся ньютоновским истинным математическим временем, протекающим независимо от чего-либо, независимо от движения.
Таким образом, преобразования Галилея отражают наше обыденное представление об инвариантности (неизменности) пространственных и временных масштабов при переходе из одной инерциальной системы отсчета в другую. Действительно, скажем, длина тела в системе К
l = Х1- Х2
К'l' = Х1- Х2
в системе
Легко видеть, что l = l'.
Из уравнения (4) получаем, что
∆t =∆ t'