Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Энергетические ресурсы.doc
Скачиваний:
0
Добавлен:
14.08.2019
Размер:
126.46 Кб
Скачать

1.2.Возобновимые энергоресурсы

Хотя использование невозобновимых энергоресурсов ископаемых топлив создает самые серьезные экономические и экологические проблемы, человек намного меньше использует возобновимые энергоресурсы природы. Не потому, что они меньше (они намного больше), а потому , что их колоссальная энергия непостоянна , распределена на больших пространствах, мало концентрирована и плохо поддается контролю. Сознавая мощь стихий, человек предпочитает бензобак, ружье, электропровод или лазерный луч, где энергия сжата, канализирована и находится в его полной власти.

Еще в 1978 г. резолюцией Генеральной Ассамблеи ООН было введено понятие «новые и возобновляемые источники энергии» (НВИЭ), включавшие гидроэнергию, солнечную геотермальную, ветровую, энергию морских волн, приливов и океана, энергию биомассы древесины, древесного угля, торфа, тяглового скота, сланцев, бутуминозных песчаников.

1.3.Геофизические ресурсы энергии очень велики. Только близкие к поверхности суши и океана перемещение воздушных и водных масс имеют мощность порядка 25 млн ГВт, что в 200 раз больше топливной мощности техносферы. Принципиальное отличие этих ресурсов от топливных заключается в том, что их использование само по себе не сопровождается загрязнением среды и не может повлиять на суммарный тепловой баланс планеты. Однако это совсем не означает их экологической нейтральности: эти ресурсы не могут быть ощутимо затронуты без того, чтобы не наступили

труднопредсказуемые изменения климата и географической среды.

Гидроэнергия стоит на первом месте среди возобновимых ресурсов техносферы. По существу она представляет собой часть кинетической энергии массы осадков. Теоретический потенциал материкового стока близок к 6000 ГВт (190 ЭДж/год). Реальный гидроэнергетический потенциал всех рек мира оценивается в 2900 ГВт. Фактически в настоящие время используется менее 1000 ГВт для выработки гидроэлектроэнергии. В мире работают десятки тысяч ГЭС с общей электрической мощностью 660 ГВт. Для их работы на реках созданы водохранилища, часто целые каскады водохранилищ. Поскольку возраст большинства гидроэнергетических узлов насчитывает несколько десятилетий, а срок их амортизации колеблется от 50 до 200 лет, можно предвидеть немало проблем, связанных с реконструкцией гидроузлов. На рост использования гидропотенциалу уже сейчас накладывается ряд экономических и экологических ограничений. Они же являются и препятствием для сколько – нибудь значимого использования в глобальном масштабе еще не оценена, и энергии приливов, равной гидропотенциалу рек.

Суммарная оценка мощности устойчивых ветров в нижних слоях атмосферы имеет порядок 5000 ГВт. Технически возможный объем ветроэнергетики мал по сравнению с этой величиной (максимальная оценка для 2020 г. – 300 ГВт – «Энергетика мира») и вряд ли составит более 2% всей энергетики техносферы, хотя в отдельных странах эта доля может быть намного больше. Так, в Дании ветросиловые установки обеспечивают уже более 3,7% выработки электроэнергии. Общая установленная электрическая мощность ветроэнергетических установок промышленного типа в мире сейчас достигла 11 ГВт и, вероятно, будет увеличиваться.

Солнечная энергия по сравнению с другими видами энергии обладает исключительными свойствами: практически неисчерпаема, экологически чистая, управляема, а по величине в тысячи раз превосходит всю энергию других источников, которые сможет использовать человечество. Потенциал эксплуатационного ресурса солнечной энергии оценивается по мощности от 100 до 500 тыс. ГВт. Из-за малой плотности этой энергии техносфера потребляет ничтожную ее часть. Некоторое количество используется в пассивной форме для создания благоприятного теплового режима в системах закрытого грунта. Эта форма использования, а также совершенствование технических средств теплового аккумулирования солнечной энергии и тепловых насосов имеет очень большую перспективу. Однако гелиоэнергетиков больше интересуют способы концентрирования солнечной энергии и ее прямое преобразование в электроэнергию. При этом решающее значение имеют такие факторы, как энергетическая освещенность, площадь улавливания, КПД преобразования и эффективность аккумулирования. Технический потенциал использования солнечной энергии оценивается в 500 ГВт. Общая мощность систем прямого преобразования солнечной энергии в настоящее время достигала 4 ГВт, в том числе наземных фотоэлектрических преобразователей- 0,1ГВт.