Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГЕОЛОГИЯ НЕФТИ И ГАЗА 2.pdf
Скачиваний:
80
Добавлен:
14.08.2019
Размер:
17.67 Mб
Скачать

vk.com/club152685050 | vk.com/id446425943

достоверными. Теоретический подход, конечно, совершенно необходим, но нужно трезво оценивать ограниченность его применения для определения равновесия и количественных зависимостей в подземных условиях, так как его точность и обоснованность не могут быть выше исходных данных. Математическая обработка малочисленных наблюдений или придание количественного значения догадке или предположению не делают вывод более точным, даже если математически он абсолютно непогрешим.

Пластовая энергия

Нефть не обладает собственной энергией движения. Энергия природного резервуара, заставляющая нефть двигаться в скважины,- это потенциальная энергия пластового давления. Эта энергия заключена главным образом в сжатых флюидах, и

ее величина определяется в основном потенциалом, т. е. гидростатическим напором пластовых флюидов. В меньшей степени пластовая энергия накапливается в сжатых горных породах, образующих природные резервуары. Таким образом, общая картина движения флюидов из пласта в скважину определяется количеством и характером энергии, заключенной в этом пласте, и эффективностью ее использования.

Для того чтобы нефть и газ могли двигаться в эксплуатирующуюся скважину,

пластовая энергия должна быть достаточной для преодоления, во-первых, контактных сил, удерживающих нефть или газ в порах коллектора, и, во-вторых, вязкости нефти и газа, также создающей определенное сопротивление их движению. Требуется достигнуть такого капиллярного давления, которое заставило бы нефть перемещаться из данной поры в соседнюю, затем - в следующую, и так до самой скважины. Этому процессу способствует образование вокруг скважины зоны пониженного пластового давления. Нефть, адсорбированная на зернах минералов, не извлекается из пласта, так же как и нефть, удерживающаяся в мельчайших порах или в виде висячих колец на контактах этих частичек. Для движения газа, обладающего незначительной вязкостью, требуется гораздо меньшая энергия, чем для перемещения нефти.

Если скважина фонтанирует нефтью или газом, это значит, что пластовое давление преодолевает вес столба нефти, газа и некоторого количества воды высотой от резервуара до устья скважины и выталкивает эту нефть на поверхность. Если давление обеспечивает продвижение нефти только к забою скважины, то для извлечения такой нефти требуется применение глубинного насоса. Когда же пластовое давление оказывается недостаточным даже для перемещения нефти в скважину, приходится прибегать к методам искусственного восстановления давления

vk.com/club152685050 | vk.com/id446425943

путем закачки в пласт воздуха, газа или воды до тех пор, пока градиент давления не повысится настолько, что нефть будет вновь продвигаться в скважину.

В момент вскрытия пласта скважиной пластовая энергия высвобождается.

Вокруг скважины образуется зона пониженного давления, возникает градиент потенциала флюида, и флюид начинает двигаться в направлении скважины. Если количество пластовой энергии невелико, снижение пластового давления на единицу добытых нефти или газа будет весьма заметным уже на первых стадиях разработки залежи. В противном случае из залежи может быть извлечено значительное количество нефти или газа прежде, чем снижение пластового давления станет ощутимым. В практике известны газовые и нефтяные залежи, характеризующиеся самой различной величиной пластовой энергии, от очень крупных до очень мелких.

Большинство залежей имеет несколько источников энергии. Ни один из них не является преобладающим на протяжении всего периода существования залежи, но каждый в той или иной мере поддерживает градиент пластового давления,

направленного в сторону скважины. Эффективность разработки большинства залежей

(получение максимального количества нефти из пласта) зависит в основном от вида пластовой энергии. Максимальная эффективность достигается в том случае, когда падение пластового давления на единицу добытых нефти или газа наименьшее.

Залежи можно классифицировать по преобладающему виду источника пластовой энергии. Однако обычно очень трудно разобраться в различных формах пластовой энергии, особенно на ранней стадии разработки залежи, когда еще не установлено значение каждой из них для добычи нефти.

В связи с этим одной из основных задач инженера-нефтяника является возможно более быстрое определение преобладающего вида пластовой энергии,

обеспечивающего наибольшую эффективность разработки залежи. Основные источники пластовой энергии, способствующие движению нефти к скважинам,

следующие: 1) газ, растворенный в нефти; 2) свободный газ, находящийся под давлением (здесь выделяются два случая - газовая залежь с нефтяной оторочкой и нефтяная залежь с газовой шапкой); 3) пластовое давление (также в двух разновидностях: обычное гидростатическое, иногда частично гидродинамическое давление; давление, обусловленное сжатой водой и нефтью или газом в газообразной или жидкой фазах); 4) упругое сжатие пород-коллекторов; 5) гравитационные силы; 6)

комбинации перечисленных источников энергии»

vk.com/club152685050 | vk.com/id446425943

Газ, растворенный в нефти

Во всех нефтяных залежах присутствует растворенный в нефти газ, хотя бы в небольших количествах [22]. Для того чтобы газ оставался в растворенном состоянии,

требуется определенное давление. Таким образом, все залежи обладают тем или иным количеством потенциальной энергии. Энергия сжатого и растворенного газа обычно является преобладающим видом пластовой энергии в залежах, сформировавшихся в изолированных и запечатанных ловушках (линзах, тектонических блоках,

сцементированных песчаных породах и т.п.). Эта энергия высвобождается при расширении растворенного газа и выделении его из нефти вследствие снижения давления в залежи и в столбе нефти в скважине. Расширяющийся газ движется в направлении более низкого градиента потенциала флюида, увлекая с собой нефть.

Залежи, разрабатываемые исключительно за счет энергии расширения газа,

высвобождающегося из раствора в нефти, называются залежами с режимом естественного истощения или режимом растворенного газа.

В момент вскрытия такой залежи давление в ней достигает максимального значения, а затем постепенно снижается по мере разработки. Так как пластовая энергия заключена главным образом в первоначально сжатом и растворенном в нефти газе, то снижение давления в общем пропорционально количеству газа, извлеченного из залежи вместе с нефтью. Снижение пластового давления обусловливает уменьшение коэффициента нефтеотдачи, поскольку оставшееся в пласте количество энергии недостаточно для восстановления первоначального давления. Остановка скважины не приводит к восполнению пластовой энергии. Когда весь растворенный газ извлечен из залежи, пластовое давление снижается до атмосферного, и

остающаяся в пласте нефть может двигаться в скважины только под воздействием гравитационных сил, что является крайне медленным и неэкономичным процессом

(см. стр. 439-440: Гравитационные силы). Следовательно, очень важно сохранить естественную энергию залежей, характеризующихся режимами растворенного газа,

поскольку расточение этой энергии неизбежно приведет к повышению стоимости разработки залежи и уменьшению количества извлекаемой нефти. В процессе разработки залежей на режиме растворенного газа наступает момент, когда пластовое давление снижается до величины давления насыщения (точки кипения), и газ начинает выделяться из раствора в свободную фазу в виде мельчайших пузырьков,

рассеянных в нефти. Эти пузырьки могут собраться в сводовой части залежи,

образовав вторичную газовую шапку. Вторичная газовая шапка лишь незначительно увеличивает пластовую энергию и эффективность добычи нефти, и ее ни в коем

vk.com/club152685050 | vk.com/id446425943

случае нельзя смешивать с первичной газовой шапкой. Иногда вторичная газовая шапка образуется в результате расширения растворенного газа и выделения его в освободившуюся часть порового пространства, ранее занятого нефтью, извлеченной на поверхность. Скважины, расположенные в пределах распространения вторичной газовой шапки, характеризуются очень высокими газовыми факторами и могут давать даже чистый газ.

В случае полного истощения растворенного газа или значительного снижения его содержания в пластовой нефти энергия природного резервуара может быть восстановлена путем нагнетания в него газа под давлением. Обычно в пласт закачивается тот же самый газ, который добывается вместе с нефтью и отделяется

(сепарируется) от нее на поверхности. Кроме повышения и поддержания пластового давления, этим достигается и дополнительный эффект: двигаясь от скважин с высоким давлением (нагнетательных) к скважинам с низким давлением

(эксплуатационным), т. е. вновь в направлении понижения градиента потенциала флюида, газ расширяется и увлекает вместе с собой нефть¹. Процесс поддержания пластового давления на уровне его первоначального значения путем закачки в пласт газа под давлением называется восстановлением давления (repressuring). Пластовое давление можно также поддержать или повысить путем закачки в пласт воды под давлением через скважины, расположенные на погруженных участках структуры. Это так называемое заводнение. Если к моменту начала заводнения или закачки газа под давлением первичная энергия пласта, создававшаяся растворенным газом, уже была в значительной степени исчерпана, то такой процесс дополнительной разработки называется вторичной добычей или вторичным методом разработки (см. также стр.447-450). Механизм добычи нефти на естественном режиме растворенного газа и на режиме искусственного поддержания давления в этом случае один и тот же.

Коэффициент нефтеотдачи при режиме растворенного газа значительно ниже,

чем при других источниках пластовой энергии, и составляет 10-30%

¹Процесс извлечения жирного газа из пласта, осушения его (отделения конденсата) и закачки сухого газа вновь в пласт с целью поддержания пластового давления называется сайклингом или рециркуляцией газа.

в большинстве случаев менее 20%, геологических запасов нефти в пласте¹. Такой низкий процент нефтеотдачи является следствием весьма ограниченного количества газа, первоначально содержавшегося в нефти и недостаточного для вытеснения нефти из породы и продвижения ее в сторону забоев скважин, а также той легкости, с

которой газ проходит через нефть. Различия в конечной добыче нефти на режиме

vk.com/club152685050 | vk.com/id446425943

растворенного газа связаны со следующим фактом: в большинстве случаев максимальный коэффициент нефтеотдачи (см. стр. 444) возможен лишь при условии очень медленного темпа разработки и относительно небольших дебитов скважин, что позволяет использовать всю или почти всю энергию сжатого газа для извлечения

Фиг. 10-12. Характеристика разработки залежи на режиме растворенного газа

(Murphy, Petrol. Engrs., p. B-92, 1952).

Фиг. 10-13. Обобщенная кривая изменения темпа добычи нефти из залежи с режимом растворенного газа (Murphy, Petrol. Engrs., p. B-94, 1952).

нефти. Только при этом условии разработка такой залежи может быть достаточно выгодной. Если увеличить темп отбора нефти из залежи, пластовое давление начнет резко падать, газовый фактор уже на ранней стадии разработки станет очень высоким,

и весьма ограниченная энергия сжатого растворенного газа будет быстро истощена. В

некоторых залежах газовый фактор резко возрастает уже после небольшой добычи нефти. Причина этого заключается в том, что относительная проницаемость (фазовая проницаемость) для нефти начинает резко снижаться: извлечение из залежи,

например, одной четверти заключенной в ней нефти может привести к уменьшению фазовой проницаемости для оставшейся нефти на 0,1 ее первоначальной величины

(см. фиг. 4-6). Это в свою очередь приводит к тому, что коллектор становится более проницаемым для газа, обладающего низкой вязкостью, т.е. к резкому повышению газового фактора. На фиг. 10-12 показан характер уменьшение добычи нефти на режиме растворенного газа с сопутствующим снижением пластового давления и повышением газового фактора. Обобщенная кривая изменения величины добычи нефти за весь период разработки залежи на режиме, использующем энергию растворенного газа,

¹Геологические запасы нефти в пласте («Oil in place») представляют собой то количество нефти, которое содержится в поровом пространстве коллектора, полностью насыщенного этой нефтью. Извлекаемая нефть - это товарная нефть (нефть, получаемая на поверхности), которая может быть добыта с помощью всех известных методов, первичных и вторичных, при существующих экономических условиях. Физически извлекаемая нефть - товарная нефть, которая может быть получена всеми известными методами безотносительно к ее стоимости. Остаточная нефть - нефть, остающаяся в пласте после окончания разработки

vk.com/club152685050 | vk.com/id446425943

залежи. Это адсорбированная нефть, а также нефть, удерживаемая капиллярным давлением в мельчайших порах. Она неизвлекаема. Первичная извлекаемая нефть может быть добыта с использованием естественной энергии пласта. Вторичная извлекаемая нефть - это нефть, добываемая с помощью искусственного восстановления энергии пласта, например путем заводнения или закачки газа под давлением.

показана на фиг. 10-13. Сравнительная характеристика добычи нефти и газовых

факторов по группе месторождений США приведена на фиг. 10-14. Второй причиной

относительно невысокой эффективности разработки нефтяной залежи на режиме

растворенного газа является повышение вязкости нефти по мере извлечения газа.

Вначале, когда выделяется растворенный в нефти газ, присутствующий в ней в виде

мельчайших рассеянных пузырьков, общая вязкость газо-нефтяной смеси

уменьшается, и эта смесь движется в пласте более свободно. Однако это лишь

временный эффект. Как только мельчайшие пузырьки газа соединятся в крупные

пузыри,

Фиг. 10-14. Соотношение между величиной газового фактора и коэффициентом нефтеотдачи для некоторых месторождений США (Katz, Williams,

Bull. Am. Assoc. Petrol. Geol., 36, p. 354, Fig. 12, 1952).

В частности, для группы месторождений побережья Мексиканского залива газовый фактор варьирует в пределах 1250-1500 куб. футов газа на 1 баррель нефти. В этих условиях на каждые 100 баррелей нефти в пласте можно получить 60-62 барреля нефти на поверхности. Наиболее высокий газовый фактор для нефтяной залежи составляет 4900 куб. фут/баррель, а самый низкий для газоконденсатной - 3300 куб. фут/баррель.

1 - газоконденсатные месторождения; 2 - нефтяные и газо-нефтяные месторождения.

образовав непрерывную газовую фазу, газ начнет обгонять нефть в своем движении к

скважинам. Большая часть нефти, обедненной растворенным газом и потому более

вязкой, становится неизвлекаемой. На этой стадии разработки скважины вместе с

нефтью начинают давать и небольшое количество воды, что свидетельствует о