
- •Рабочая программа учебной дисциплины
- •Объем дисциплины, виды учебной работы и формы контроля в соответствии с учебным планом специальностей по формам обучения
- •Тема 7. Численное решение краевых задач для обыкновенных дифференциальных уравнений
- •Тема 8. Обзор методов решения уравнений в частных производных
- •Раздел 2. Численные методы решения дифференциальных уравнений
- •Тестовые задания
- •Раздел 1. Методы решения задач алгебры и математического анализа
- •1. Чем вызвана неустранимая погрешность?
- •3. Пусть а - точное, а - приближенное значение некоторого числа. Дайте опре деление относительной погрешности.
- •7. Чем обусловлено появление погрешности округления при численном реше нии поставленной задачи?
- •8. Дайте определение сплайн-функции.
- •9. Сформулируйте постановку задачи интерполирования функции.
- •15. Назовите достоинства и недостатки интерполяционных формул Лагранжа.
- •16. В чем состоит сущность метода наименьших квадратов?
- •17. Когда удобно пользоваться интерполяционной схемой Эйткена?
- •19. Назовите области применения интерполирования функций.
- •С какой точностью можно вычислить по интерполяционной формуле Ла гранжа 1п 100,5 по известным значениям 1п 100, 1п 101, 1п 102 и 1п 103. А)4,5-10"5; б)6,7-10"7; в)2,3-10"9.
- •23. Опишите методику вычисления определенного интеграла по формулам прямоугольников.
- •25. Определить величину шага к по оценке остаточного члена для вычисления
- •26. Назовите области применения формул численного интегрирования.
- •29. Выбор шага интегрирования для обеспечения заданной точности вычисле ния интеграла с помощью метода двойного пересчета.
- •30. Проведите сравнение формул численного интегрирования по точности на основании остаточных членов формул.
- •32. Отличие метода Гаусса с выбором главного (ведущего) элемента от метода Гаусса решения системы линейных алгебраических уравнений.
- •33. В чем преимущество метода Зейделя для решения системы линейных ал гебраических уравнений перед методом простой итерации?
- •34. Для решения систем линейных алгебраических уравнений какого вида раз работан метод прогонки?
- •35. Опишите метод Гаусса решения системы линейных алгебраических уравнений.
- •36. Почему метод простой итерации решения систем линейных алгебраических уравнений называется самоисправляющимся?
- •37. Каковы недостатки решения системы уравнений по правилу Крамера?
- •38. Опишите метод Якоби (простой итерации) решения системы линейных ал гебраических уравнений.
- •39. Опишите метод деления отрезка пополам.
- •41. В чем достоинство и недостаток метода Ньютона нахождения корней нели нейного уравнения?
- •43. Решение нелинейного уравнения методом простой итерации.
- •44. Проведите сравнение методов деления отрезка пополам (доп) и Ньютона по различным критериям (универсальность, скорость сходимости).
- •45. Назовите основные этапы процесса нахождения корня нелинейного уравнения.
- •Раздел 2. Численные методы решения дифференциальных уравнений 1. В чем достоинство неявных методов решения дифференциальных уравнений?
- •3. Оценить погрешность аппроксимации правой разностной производной
- •4. Численное решение методом Эйлера задачи Коши для обыкновенных диф ференциальных уравнений.
- •5. Почему метод Рунге-Кутта называется самостартующим?
- •6. Опишите построение разностной схемы для численного решения обыкно венного дифференциального уравнения.
- •7. Разностная аппроксимация дифференциальных операторов.
- •8. Оценить погрешность аппроксимации центральной разностной производной
- •9. Какой метод численного решения дифференциального уравнения называет ся многошаговым?
- •10. Опишите сущность разностной аппроксимации задачи Коши для обыкно венного дифференциального уравнения первого порядка.
- •11. Оценить погрешность аппроксимации левой разностной производной
- •14. Какая конечно-разностная схема, аппроксимирующая дифференциальное уравнение в частных производных, называтся согласованной?
- •15. Какая задача для уравнений в частных производных называется корректно поставленной?
- •16. Физический смысл условия Куранта-Фридлихса-Леви.
- •17. Какая конечно-разностная схема называется слабо неустойчивой (устойчивой)?
- •18. Какие физические процессы описывают уравнения в частных производных эллиптического типа?
- •19. Укажите методы построения конечно-разностных схем, аппроксимирующих дифференциальное уравнение в частных производных.
- •20. Дайте определение маршевой задачи для уравнений в частных производных.
Тестовые задания
Раздел 1. Методы решения задач алгебры и математического анализа
1. Чем вызвана неустранимая погрешность?
а) Тем, что математическая модель исследуемого объекта никогда не учитывает всех без исключения явлений, влияющих на состояние объекта, и тем, что входящие в за дачу заданные параметры (числа или функции) измеряются с какой-либо ошибкой.
б) Тем, что любые арифметические операции над числами производятся при нали чии ограниченного количества используемых для записи чисел разрядов позицион ной системы исчисления.
в) Тем, что в результате применения численного метода могут быть получены не точные, а приближенные значения искомой функции, даже если все предписанные методом вычисления проделаны абсолютно точно.
2. Некоторые величины г = 0,34 и к = 0,42 измерены с точностью до 0,01. Найти абсолютную и относительную погрешности в определении величины и = 1к = 0,1428.
а) Абсолютная погрешность = 0,0075 , относительная погрешность = 0,053.
б) Абсолютная погрешность = 0,0077 , относительная погрешность = 0,051.
в) Абсолютная погрешность = 0,0077 , относительная погрешность = 0,054.
3. Пусть а - точное, а - приближенное значение некоторого числа. Дайте опре деление относительной погрешности.
а) Относительной погрешностью приближения а называется величина Ьа такая, что
18
а - а <8а.
б) Относительной погрешностью приближения а называется величина Ъа такая, что
в) Относительной погрешностью приближения а называется величина
5 =
(а-а*)/а ,(афО).
4. Определить относительную погрешность приближенного числа Ь = 2,3254 по ее абсолютной погрешности Аь = 0,01, предварительно округлив число Ь до вер ных знаков.
а) Относительная погрешность = 0,0078. б) Относительная погрешность = 0,0043. в) Относительная погрешность = 0,0143.
5. Объем V = 2,385 м3 и плотность р = 1400 кг/м3 образца измерены с точностью до 1 дм3 и 1 кг/м3 соответственно. Найти абсолютную и относительную погреш ности в определении массы образца т = У#р = 3339 кг.
а) Абсолютная погрешность = 3,895, относительная погрешность = 0,0012.
б) Абсолютная погрешность = 3,786, относительная погрешность = 0,0011.
в) Абсолютная погрешность = 3,657, относительная погрешность = 0,0010.
6. Даны числа а = 1,137 и Ь = 1,073 с абсолютными погрешностями Аа=А/,=0,011. Оценить погрешность их разности с = а - Ь.
а)Ас=0,011. б)Ас=0,022. в)Ас=0,001.
7. Чем обусловлено появление погрешности округления при численном реше нии поставленной задачи?
а) Тем, что математическая модель исследуемого объекта не может учитывать все без исключения явления, влияющие на состояние объекта.
б) Тем, что любые арифметические операции над числами производятся при нали чии ограниченного количества используемых для записи чисел разрядов позицион ной системы исчисления.
в) Тем, что в результате применения численного метода могут быть получены не точные, а приближенные значения искомой функции, даже если все предписанные методом вычисления проделаны абсолютно точно.