
- •Рабочая программа учебной дисциплины
- •Объем дисциплины, виды учебной работы и формы контроля в соответствии с учебным планом специальностей по формам обучения
- •Тема 7. Численное решение краевых задач для обыкновенных дифференциальных уравнений
- •Тема 8. Обзор методов решения уравнений в частных производных
- •Раздел 2. Численные методы решения дифференциальных уравнений
- •Тестовые задания
- •Раздел 1. Методы решения задач алгебры и математического анализа
- •1. Чем вызвана неустранимая погрешность?
- •3. Пусть а - точное, а - приближенное значение некоторого числа. Дайте опре деление относительной погрешности.
- •7. Чем обусловлено появление погрешности округления при численном реше нии поставленной задачи?
- •8. Дайте определение сплайн-функции.
- •9. Сформулируйте постановку задачи интерполирования функции.
- •15. Назовите достоинства и недостатки интерполяционных формул Лагранжа.
- •16. В чем состоит сущность метода наименьших квадратов?
- •17. Когда удобно пользоваться интерполяционной схемой Эйткена?
- •19. Назовите области применения интерполирования функций.
- •С какой точностью можно вычислить по интерполяционной формуле Ла гранжа 1п 100,5 по известным значениям 1п 100, 1п 101, 1п 102 и 1п 103. А)4,5-10"5; б)6,7-10"7; в)2,3-10"9.
- •23. Опишите методику вычисления определенного интеграла по формулам прямоугольников.
- •25. Определить величину шага к по оценке остаточного члена для вычисления
- •26. Назовите области применения формул численного интегрирования.
- •29. Выбор шага интегрирования для обеспечения заданной точности вычисле ния интеграла с помощью метода двойного пересчета.
- •30. Проведите сравнение формул численного интегрирования по точности на основании остаточных членов формул.
- •32. Отличие метода Гаусса с выбором главного (ведущего) элемента от метода Гаусса решения системы линейных алгебраических уравнений.
- •33. В чем преимущество метода Зейделя для решения системы линейных ал гебраических уравнений перед методом простой итерации?
- •34. Для решения систем линейных алгебраических уравнений какого вида раз работан метод прогонки?
- •35. Опишите метод Гаусса решения системы линейных алгебраических уравнений.
- •36. Почему метод простой итерации решения систем линейных алгебраических уравнений называется самоисправляющимся?
- •37. Каковы недостатки решения системы уравнений по правилу Крамера?
- •38. Опишите метод Якоби (простой итерации) решения системы линейных ал гебраических уравнений.
- •39. Опишите метод деления отрезка пополам.
- •41. В чем достоинство и недостаток метода Ньютона нахождения корней нели нейного уравнения?
- •43. Решение нелинейного уравнения методом простой итерации.
- •44. Проведите сравнение методов деления отрезка пополам (доп) и Ньютона по различным критериям (универсальность, скорость сходимости).
- •45. Назовите основные этапы процесса нахождения корня нелинейного уравнения.
- •Раздел 2. Численные методы решения дифференциальных уравнений 1. В чем достоинство неявных методов решения дифференциальных уравнений?
- •3. Оценить погрешность аппроксимации правой разностной производной
- •4. Численное решение методом Эйлера задачи Коши для обыкновенных диф ференциальных уравнений.
- •5. Почему метод Рунге-Кутта называется самостартующим?
- •6. Опишите построение разностной схемы для численного решения обыкно венного дифференциального уравнения.
- •7. Разностная аппроксимация дифференциальных операторов.
- •8. Оценить погрешность аппроксимации центральной разностной производной
- •9. Какой метод численного решения дифференциального уравнения называет ся многошаговым?
- •10. Опишите сущность разностной аппроксимации задачи Коши для обыкно венного дифференциального уравнения первого порядка.
- •11. Оценить погрешность аппроксимации левой разностной производной
- •14. Какая конечно-разностная схема, аппроксимирующая дифференциальное уравнение в частных производных, называтся согласованной?
- •15. Какая задача для уравнений в частных производных называется корректно поставленной?
- •16. Физический смысл условия Куранта-Фридлихса-Леви.
- •17. Какая конечно-разностная схема называется слабо неустойчивой (устойчивой)?
- •18. Какие физические процессы описывают уравнения в частных производных эллиптического типа?
- •19. Укажите методы построения конечно-разностных схем, аппроксимирующих дифференциальное уравнение в частных производных.
- •20. Дайте определение маршевой задачи для уравнений в частных производных.
41. В чем достоинство и недостаток метода Ньютона нахождения корней нели нейного уравнения?
а) Метод Ньютона весьма быстро сходится, точность каждого приближения в этом методе пропорциональна квадрату точности предыдущего. Основной недостаток метода - необходимость достаточно точного начального приближения.
б) Метод Ньютона относится к числу итерационных методов второго порядка и имеет наибольшую точность нахождения корней нелинейного уравнения. Основной недостаток метода - медленная скорость сходимости, что приводит к значительным затратам машинного времени при решении сложных нелинейных уравнений.
в) Метод Ньютона в ряду итерационных методов нахождения корней нелинейного уравнения наиболее прост в организации вычислительного процесса. Основной не достаток метода - достаточно медленная скорость сходимости.
42. Дано уравнение х3 + х2 -1 = 0. Привести данное уравнение к виду, при кото ром выполняются достаточные условия сходимости для метода простой итера ции на отрезке [0,1; 1].
а) х = х~2 -3 . б) х = (1 -х3)/3х. в) х = \14^+Ъ .
43. Решение нелинейного уравнения методом простой итерации.
а) Нелинейное уравнение Дх) = 0 на интервале [а, Ь] заменяется эквивалентным уравнением х = ф(х). Итерации образуются по правилу хк+\ = ф(х^), (к = 0, 1, ...), при чем задается начальное приближение х0. Если последовательность чисел Хк имеет предел при &—>0, то этот предел является корнем уравнения х = ф(х).
б) Для нахождения корня нелинейного уравнения Дх) = 0 методом простой итерации требуется, чтобы на концах интервала [а, Ь] функция Дх) принимала ненулевые зна чения противоположного знака. Итерационная процедура состоит в переходе от та кого интервала к новому интервалу, совпадающему с одной из половин предыдуще го и обладающему тем же свойством. Процесс заканчивается, когда длина вновь по лученного интервала станет меньше заданной точности 8, и в качестве корня урав нения приближенно принимается середина этого интервала.
в) Для нахождения корня нелинейного уравнения Дх) = 0 методом простой итерации
27
требуется, чтобы функция Дх) имела на интервале [а, Ь] непрерывные производные 1-го и 2-го порядков, сохраняющие на [а, Ь] постоянный знак. Для начала вычислений необходимо задание одного начального приближения х0. Последующие приближения определяется по формуле хк+\ = хк~Лхк)//(хк), (к = 0, 1, ...).
44. Проведите сравнение методов деления отрезка пополам (доп) и Ньютона по различным критериям (универсальность, скорость сходимости).
а) Метод Ньютона обладает большей универсальностью, чем метод ДОП, т.к. схо димость зависит только от выбора начальной точки. Вычисления методом ДОП можно начинать лишь с отрезка, на концах которого функция имеет разные знаки, а внутри этого интервала непрерывные производные 1-го и 2-го порядков. При реше нии практических задач не всегда удается проверить выполнение необходимых ог раничений на выбор подобного интервала. Однако метод ДОП обладает более высо кой скоростью сходимости.
б) Более универсальным является метод ДОП. Он гарантирует получение решения для любой непрерывной функции Г(х), если найден интервал, на котором она меняет знак. Метод Ньютона предъявляет к функции более жесткие требования. Сходи мость метода Ньютона существенно зависит от выбора начальной точки. При реали зации данного метода необходимо предусматривать вычисление производных функции для организации итерационного процесса и проверки условий сходимости. Важным преимуществом метода Ньютона является высокая скорость сходимости, обеспечивающая значительную экономию машинного времени при решении слож ных нелинейных уравнений.
в) Методы Ньютона и ДОП имеют одинаковые необходимые и достаточные условия сходимости, поэтому применимы в одинаковых условиях. Однако метод ДОП обла дает линейной скоростью сходимости, поэтому весьма быстро сходится в отличие от метода Ньютона, который обладает лишь квадратичной скоростью сходимости.