
- •1. Автоматы и формальные языки. Классификация формальных языков и автоматов. Концепция порождения и распознавания. (та)
- •2. Технологические процессы изготовления печатных плат. (ктоп)
- •3. Прерывания в мпс. Типы прерываний. (мпс)
- •1. Регулярные языки и конечные автоматы. (та)
- •2. Индуктивные паразитные наводки в цепях эва. (ктоп)
- •3. Обмен информацией между микропроцессором и внешним устройством. (мпс)
- •1. Контекстно-свободные грамматики и магазинные автоматы. (та)
- •2. Эффективность электромагнитного экранирования. Расчёт электромагнитных экранов. (ктоп)
- •3. Система ввода-вывода. Параллельный порт. (мпс)
- •1. Произвольные автоматы и машина Тьюринга. (та)
- •2. Емкостные паразитные наводки в цепях эва. (ктоп)
- •3. Понятие «технология программирования». Характеристики качества программного обеспечения. Сложность по. Пути ограничения сложности. (тп)
- •1. Абстрактный синтез конечных автоматов. Минимизация и детерминация конечных автоматов. Автоматы Мили и Мура. (та)
- •2. Понятие надёжности электронного аппарата. Расчёт времени безотказной работы. (ктоп)
- •3. Модели жизненного цикла по. Методологии разработки сложных программных систем. Примеры «тяжелого» и «легкого» процесса. (тп)
- •1. Структурный автомат. Канонический метод структурного синтеза автоматов. Этапы синтеза. (та)
- •2. Конструкции корпусов эа и механизмы переноса тепла в них. (ктоп)
- •3. Универсальный язык моделирования uml, его назначение. Варианты использования. Диаграммы вариантов использования. Диаграммы классов. (тп)
- •1. Память структурного автомата. Элементы памяти. Триггеры. (та)
- •2. Роль стандартизации в технике конструирования. Применение ескд и естд. (ктоп)
- •3. Универсальный язык моделирования uml, его назначение. Диаграммы взаимодействия: последовательные и кооперативные. Применение этих диаграмм. (тп)
- •Кооперативные диаграммы
- •1. Экспертный метод весовых коэффициентов важности. (моделирование)
- •2. Понятие вычислительного процесса и ресурса, классификация ресурсов, основные виды ресурсов. (спо)
- •3. Универсальный язык моделирования uml, его назначение. Диаграммы деятельности. Диаграммы состояний. Применение этих диаграмм. (тп)
- •1. Планирование и обработка результатов расслоенного (ступенчатого) эксперимента. (моделирование)
- •2. Процессы, состояния процесса, операции над процессами, планирование и диспетчеризация процессов. (спо)
- •3. Тестирование и отладка по. Основные принципы тестирования. Стратегии тестирования программных модулей. Методы структурного тестирования. (тп)
- •1. Полный факторный эксперимент (пфэ). (моделирование)
- •2. Параллельная обработка процессов, проблемы критических участков, взаимоисключения. Синхронизация параллельных процессов на низком уровне. (спо)
- •3. Тестирование по. Основные принципы тестирования. Структурное и функциональное тестирование. Методы функционального тестирования. (тп)
- •1. Модифицированный метод случайного баланса (ммсб). (моделирование)
- •2. Параллельная обработка процессов, проблемы критических участков, взаимоисключения. Синхронизация параллельных процессов на высоком уровне. (спо)
- •3. Эволюция технологий программирования. Структурное программирование. Объектно-ориентированное программирование. (тп)
- •1. Метод наименьших квадратов с предварительной ортогонализацией факторов (мнко). (моделирование)
- •2. Тупики, типы ресурсов для изучения тупиковых ситуаций, необходимые условия возникновения тупиков, стратегии предотвращения тупиков (спо)
- •3. Стадии разработки новой сапр и программного обеспечения сапр. (сапр)
- •1. Планирование второго порядка. Типы планов, их особенности.
- •2. Стратегии управления памятью: стратегии вталкивания, стратегии размещения, стратегии выталкивания. (спо)
- •3. Основная функция сапр. Классификация объектов сапр. (сапр)
- •1. Задача оптимизации. Метод крутого восхождения (Бокса-Уилсона). (моделирование)
- •2. Файловая система, функции файловой системы, состав файловой системы, архитектура, примеры современных файловых систем. (спо)
- •3. Виды и назначение составляющих компонентов сапр. Аннотация. (сапр)
- •1. Оптимизация в условиях ограничений. (моделирование)
- •2. Иерархия памяти. Эволюция видов организации памяти. Особенности страничной, сегментной и сегментно-страничной организации памяти. (спо) Иерархия памяти
- •Эволюция видов организации памяти
- •Сегментация
- •Страничная организация памяти
- •Комбинированная сегментно-страничная организация памяти
- •3. Моделирование в сапр. Виды моделей. Применение.
- •1. Цифровые интегральные микросхемы. Серии интегральных микросхем. Параметры цифровых имс. (схемотехника)
- •2. Концепция файловых систем fat32 и ntfs: структура логического диска, возможности, преимущества. (спо)
- •3. Метод конечных элементов. Особенности р- и h-версий. Применение. (сапр)
- •1. Базовые логические элементы (блэ). Параметры и характеристики блэ. (схемотехника)
- •2. Стандартный интерфейс ieее-1284. (ипу)
- •3. Графические стандарты сапр. Уровни связи. Международные организации, устанавливающие стандарты. (сапр)
- •1. Основные типы (технологии) базовых логических элементов. Сравнительная характеристика серий ттл, ттлш, кмоп, эсл, иил (схемотехника)
- •2. Стандартный интерфейс rs-232c. (ипу)
- •3. Основные концепции графического программирования в сапр. Краткий обзор (сапр)
- •2. Шина расширения eisa. (ипу)
- •3. Виртуальная инженерия. Понятие. Компоненты. (сапр)
- •1. Комбинационные схемы: шинный формирователь, схема сравнения, сумматоры. (схемотехника)
- •1) Шинный формирователь
- •Сумматор Сумматор (англ. – adder) – цифровой узел, вычисляющий код арифметической суммы входных кодов. Сумматор с последовательным переносом
- •2. Организация стандартной шины pci. (ипу)
- •3. Типы данных сапр, поддерживаемых субд. Классификация. (сапр)
- •1. Триггеры. Принцип действия основных типов триггеров. (схемотехника)
- •2. Вид и организация устройств памяти. Интерфейсы устройств памяти. (ипу)
- •3. Базы данных сапр. Особенности хранения и применения. (сапр)
- •1. Счётчики. Основные типы счётчиков. (схемотехника)
- •2) Организация стандартной шины pci (ипу)
- •2. Интерфейсы графических адаптеров и мониторов. (ипу)
- •3. Общие принципы построения вычислительных сетей. Состав сети, квалификация вычислительных сетей. Топологии сетей. (сети)
- •1. Постоянное запоминающее устройство (пзу). Характеристика основных типов пзу. (схемотехника)
- •2. Параллельный интерфейс нжмд ата и его последовательная модернизация Serial ata. (ипу)
- •3. Модель osi. Уровни модели osi. Функции, выполняемые уровнями. (сети)
- •1. Оперативное запоминающее устройство (озу). Статическое и динамическое озу. (схемотехника)
- •2. Функциональное устройство звуковой карты, интерфейс midi, электромузыкальный цифровой синтезатор. (ипу)
- •Стандарт на аппаратуру и программное обеспечение
- •3. Система передачи данных в сети. Типы линий связи. Основные характеристики каналов связи. (сети)
- •1. Буферная память типа fifo ("очередь") и lifo ("магазин"). (схемотехника)
- •2. Структура центрального процессора. Основные блоки. (мпс)
- •3. Кодирование информации. Виды кодов. Самосинхронизирующиеся коды. (сети)
- •1. Базовый принцип конструирования и конструктивные модули. (ктоп)
- •2. Традиционная архитектура мпс по принципам фон Неймана. (мпс)
- •3. Способы доступа к сети. Метод доступа опроса/выбора. Маркерный метод доступа. (сети)
- •1. Показатели качества конструкции. (ктоп)
- •2. Система ввода-вывода. Последовательный порт. (мпс)
- •3. Технологии локальных сетей. Сравнить особенности технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, fddi. Оборудование локальных сетей. (сети)
- •1. Влияние внешних факторов на работу эа и методы борьбы с ними. (ктоп)
- •2. Типы памяти микропроцессора. Подключение памяти. (мпс)
- •3. Технологии глобальных сетей X.25, Frame Relay, атм. Формат блока данных. Основные процедуры, используемые протоколы. (сети)
Эволюция видов организации памяти
Эволюция организации памяти осуществлялась от систем реальной памяти, выделяемой в полное распоряжение одного пользователя, до систем виртуальной памяти, сочетающих методы страничной и сегментной организации.
Реальная память. Однопользовательские системы, когда программа должна занимать один сплошной блок ячеек памяти использовались в ОС первого поколения.
Мультипрограммные системы с реальной памятью.
Мультипрограммирование с фиксированными разделами характерно для ОС второго поколения, когда основная память разбивается на ряд разделов фиксированной длины, и в каждом разделе размещается одно задание, а ЦП переключается с задания на задание, создавая иллюзию одновременного их выполнения.
Однако и такая организация памяти сопряжена с определенными потерями, которые становятся очевидными, когда задания завершаются, а в основной памяти остаются свободные участки - “дыры”. Эти участки можно использовать для размещения других заданий, однако, все равно будут оставаться “дыры”, хотя и меньшего размера. При размещении новых программ, поступающих в ОП реализуют, как правило одну из трех стратегий:
стратегия наиболее подходящего, когда задание помещают в наиболее подходящий по размеру участок, где остается меньше свободной памяти;
стратегия первого подходящего, когда задание размещается в первом подходящем по размеру участке;
стратегия наименее подходящего, когда задание размещают в участке, где остается максимальное свободное пространство, эта абсурдная на первый взгляд стратегия дает возможность в дальнейшем использовать “дыры” максимального размера, для дальнейшего их объединения и использования.
Виртуальная память
Суть концепции виртуальной памяти заключается в том, что адреса, к которым обращается выполняющийся процесс, отделяются от адресов, реально существующих в физической памяти. Те адреса, на которые делает ссылки выполняющийся процесс, называются виртуальными адресами, а те адреса, которые существуют в памяти, называются реальными или физическими адресами.
Несмотря на то, что процессы обращаются только к виртуальным адресам, в действительности они должны работать с реальной памятью, таким образом, во время выполнения процесса виртуальные адреса необходимо преобразовывать в реальные, причем это необходимо делать быстро, чтобы не снижалась производительность вычислительной машины.
Мультипрограммные системы с виртуальной памятью позволяют избежать многих недостатков реальной организации памяти . При организации виртуальной памяти в системах используется сегментная организация, страничная организация или комбинированная сегментно-страничная организация. Поскольку все современные ОС используют концепцию виртуальной памяти, далее мы более подробно остановимся на, сегментной, страничной и сегментно-страничной организации памяти.
Сегментация
Сегментация (segmentation) - это прием организации программ, при котором адресная структура программы отражает ее содержательное членение. При сегментации пространство адресов каждой программы подразделяется на сегменты различной длины, которые соответствуют содержательно разным частям программы. Например, сегментом может быть процедура или область данных. В этом случае адрес состоит из имени сегмента и адреса внутри сегмента - смещения. Поскольку к программным сегментам обращаются по именам, можно при распределении памяти размещать сегменты в несмежных областях памяти, более того, не все сегменты должны одновременно находится в ОП, часть из них может находится во внешней памяти и перемещаться в ОП по мере необходимости.
Как уже указывалось, в системе с сегментацией каждый адрес представляет пару [s,d]: s - имя сегмента и d - смещение. Каждой программе соответствует всегда присутствующая в памяти таблица сегментов, в которой каждому сегменту данного процесса соответствует одна запись. С помощью этой таблицы система отображает программные адреса в истинные адреса ОП. Адрес таблицы хранится в аппаратном регистре, называемом регистром таблицы сегментов.
У сегментации пространства адресов множество преимуществ по сравнению с абсолютной адресацией, и главное - это эффективное использование оперативной памяти. Если в ОП недостаточно места для всех сегментов данной программы, некоторые могут временно располагаться во вспомогательной памяти. Если какой-то программе потребовалось ввести в ОП новый сегмент, то система может любой сегмент убрать из ОП во вспомогательную. Вытесняемому сегменту не обязательно принадлежать той программе, для которой в ОП вводится новый сегмент. Какой таблице сегментов соответствует вытесняемый сегмент, не имеет значения, главное, чтобы при переводе его во вспомогательную память в соответствующей таблице сегментов изменилось значение признака.