
- •Основы кристаллографии и дефекты кристаллического строения
- •Кристаллографические проекции
- •Симметрия структуры кристаллов
- •Точечные дефекты
- •Механизмы их перемещения
- •Введение
- •Понятие о кристаллическом строении кристаллографическая символика
- •Основные свойства кристаллов
- •1.2. Кристаллографическая символика
- •1.3. Символы узлов
- •1.4. Символы плоскостей
- •1.5. Символы направлений
- •1.6. Символы плоскостей и направлений кристаллов гексагональной сингонии
- •1.7. Примеры определения символов плоскостей и направлений
- •1.8. Определение символов граней и направлений по методу косинусов в кубической решетке
- •1.9. Связь между символами плоскостей и направлений в кристаллах
- •Вопросы для самопроверки:
- •Кристаллографические проекции
- •2.1 Сферическая проекция
- •2.2. Стереографическая проекция
- •2.3. Гномостреографическая проекция
- •2.4. Гномоническая проекция
- •2.5. Решение кристаллографических задач по сетке Вульфа
- •Элементы симметрии конечных фигур. Симметрия структуры кристаллов
- •3.1. Понятие симметрии
- •3.2. Элементы симметрии кристаллических многогранников
- •3.3. Изображение элементов симметрии на плоскости стереографической проекции
- •Обозначение элементов симметрии
- •3.4. Теоремы сложения элементов симметрии
- •3.5.Категории и сингонии
- •Характеристика категорий и сингоний
- •3.6.Обозначение классов симметрии
- •3.7. Формы кристаллов
- •3.8. Решетки Бравэ
- •Тип ячейки Бравэ
- •Элементы симметрии кристаллических структур
- •Международные обозначения винтовых осей и плоскостей скользящего отражения.
- •3.10. Координационное число. Координационный многогранник
- •Координационное число для некоторых структур
- •Введение.
- •4. Точечные дефекты
- •4.1. Виды точечных дефектов
- •4.2. Искажение решетки вокруг точечных дефектов
- •4.3. Термодинамика точечных дефектов
- •4.4. Миграция точечных дефектов
- •4.5. Источники и стоки точечных дефектов
- •4.6. Комплексы точечных дефектов
- •4.7. Поведение вакансий при закалке и отжиге
- •4.8. Методы определения концентрации вакансий, энергии их образования и миграции
- •5. Основные виды дислокаций и их движение
- •5.1. Краевая дислокация
- •5.2. Скольжение краевой дислокации
- •5.3. Переползание краевой дислокации
- •5.4. Винтовая дислокация
- •5.5. Смешанные дислокации
- •5.6. Призматические дислокации
- •5.7. Вектор бюргерса
- •5.8. Плотность дислокаций
- •6. Упругие свойства дислокаций
- •6.1. Энергия дислокаций
- •6.2. Силы, действующие на дислокацию
- •6.3. Упругое взаимодействие параллельных краевых
- •6.4. Упругое взаимодействие параллельных винтовых
- •7. Поверхностные дефекты
- •7.1.Плотнейшие упаковки
- •7.2. Дефекты упаковки
- •7.3. Границы зерен и субзерен
- •7.4. Малоугловые границы
- •7.5. Высокоугловые границы
- •8. Дислокации в типичных металлических структурах
- •8.1. Подразделение дислокаций на полные и частичные
- •8.2. Энергетический критерий дислокационных реакций
- •8.3. Характерные полные дислокации
- •9. Частичные дислокации. Растянутые дислокации
- •9.1. Частичные дислокации шокли
- •9.2. Частичные дислокации франка
- •9.3. Стандартный тетраэдр томпсона
- •9.4. Вершинные дислокации и дислокации ломер-коттрелла
- •9.5. Тетраэдр дефектов упаковки. Стандартная бипирамида
- •9.6. Дислокационные реакции в о.Ц.К. Решетке
- •10. Взаимодействие дислокаций между собой и с точечными дефектами
- •10.1. Поперечное скольжение растянутых дислокаций
- •10.2. Двойникующая дислокация
- •10.3. Дислокации в упорядоченных сплавах
- •10.4. Пересечение дислокаций
- •10.5. Взаимодействие дислокаций с точечными дефектами
- •10.6. Торможение дислокаций
- •10.7. Образование дислокаций
- •10.8. Методы выявления дислокаций в металлах
- •Библиографический список:
Введение
Кристаллография - одна из главных фундаментальных наук о Земле, ее веществе. Это наука не только о кристаллах - о процессах их образования, об их внешней форме, внутреннем строении и физических свойствах, - но и о закономерностях развития Земли, ее формы, о процессах, происходящих в глубинах геосфер.
Во всем мире кристаллографические знания приобретают все большее значение. Практически все научные и технические достижения последнего времени (компьютерная техника, электронная микроскопия, квазикристаллы, высокотемпературные сверхпроводники и т. д.) непосредственно связаны с кристаллографией. Положение современной кристаллографии во многом напоминает ситуацию с математикой, методы которой используются в многочисленных и самых разнообразных дисциплинах. Следует подчеркнуть, что кристаллография - вполне самостоятельная наука. Как и каждая наука, она обладает уникальным, только ей присущим методом - применительно к кристаллографии это метод симметрии, который является общим методом познания закономерностей развития Земли, ее вещества.
Кристаллография может быть недоступной для непосредственного наблюдения. Но она существует в той или иной форме у всех материальных объектов.
Практическое занятие 1
Понятие о кристаллическом строении кристаллографическая символика
Основные свойства кристаллов
Что же такое кристалл? Это огромная совокупность одинаковых атомов, ионов или молекул, которые во всех трех измерениях расположены в строгом порядке. Таким образом, кристаллами называются твердые тела с упорядоченным внутренним строением на уровне атомов и молекул, т. е. тела, обладающие трехмерно-периодической пространственной атомной структурой и имеющие вследствие этого при определенных условиях образования форму многогранников.
Если бы можно было рассмотреть кристаллическое вещество при сверхувеличении в миллиарды раз, то мы бы увидели, что одинаковые атомы (или частицы) регулярно повторяются с одинаковым шагом в параллельных рядах и плоских параллельных слоях.
В кристаллическом многограннике и в вырезанной из него пластинке одинаково закономерное, симметричное, периодическое расположение частиц. Частицы, из которых сложены кристаллы, т. е. атомы, ионы, молекулы, образуют правильные, симметричные ряды, сетки, решетки (рис. 1).
Рис. 1. Закономерное расположение атомов в кристалле золота. (Снято в электронном микроскопе)
|
Рис. 2. Рентгенограмма кристалла
|
Эти решетки являются естественными трехмерными дифракционными решетками для рентгеновских лучей. Структуру кристаллов исследуют по дифракции рентгеновских лучей (рис. 2), дифракции электронов, нейтронов, с помощью электронного микроскопа, ионного проектора (рис. 3) и другими методами.
Отдельные, целостные кристаллы образуют монокристаллы; существуют также и поликристаллы - агрегаты многих, мелких кристаллов, иногда столь мелких монокристальных зерен, что у них уже нельзя различить характерных очертаний кристалла.
Рис. 3. Симметричное расположение атомов в монокристалле платины, сфотографированное с помощью ионного проектора |
Расположение частиц (атомов, ионов, молекул), становится закономерным, упоря-доченным, когда вещество переходит из аморфной фазы (газ, жидкость, стекло-образное состояние) в кристаллическую (рис. 4), соответствующую минимуму свободной энергии при данных условиях. Закономерность расположения частиц, их природа, их энергетический спектр и силы связи между ними определяют физические свойства кристалла.
Закономерность и симметрия структуры кристалла - следствие динамического равновесия многих сил или процессов. Внешние воздействия, как, например, электрическое или магнитное поле, механическое усилие или добавление чужеродных атомов в кристалл, могут нарушать это динамическое равновесие и соответственно менять свойства кристалла. Это открывает широкие возможности управления свойствами кристаллов, используемые в современной технике.
Рис. 4. Модель расположения частиц в веществе: а - кристалл; б - жидкость; в – газ |
Кристалл называется однородным, если для любой точки, взятой внутри него, найдется такая, что свойства кристалла в обеих этих точках совершенно аналогичны, причем вторая точка отстоит от первой на некотором конечном расстоянии. Из экспериментальных данных известно, что в кристаллах неорганических веществ это расстояние обычно составляет несколько десятых долей нанометра. Такие «одинаковые», или эквивалентные, точки периодически повторяются в пространстве, образуя бесконечные ряды, сетки, решетки.
Уже с самого начала видна двойственность подхода к описанию кристаллического вещества: кристаллы можно рассматривать как дискретные (прерывные) и как сплошные (непрерывные) среды. Дискретность внутреннего строения означает, что свойства кристалла не могут быть одинаковыми там, где частица есть, и там, где частицы нет, или в местах, в которых расположены частицы разных сортов. Однако для описания многих свойств кристалла достаточно ограничиться рассмотрением объемов значительно больших, чем собственный объем частицы, и значительно меньших, чем объем кристалла в целом. Именно в таком понимании рассматривают кристалл как среду сплошную и однородную.
Вследствие того, что в структуре кристалла в разных направлениях различны расстояния и силы связи между частицами, большинство свойств кристалла анизотропно, т. е. различно в разных направлениях, но одинаково в направлениях, симметричных друг другу. Например, слюда легко расщепляется на параллельные листочки, но только вдоль плоскостей с одной определенной ориентацией, а вдоль других плоскостей расщепить ее не удается.
Анизотропной является и скорость роста кристалла. Если бы скорость роста была изотропной, кристалл вырастал бы в форме шара. Именно вследствие того, что скорости роста кристалла различны в разных направлениях и эти различия симметричны в пространстве, кристалл вырастает в форме симметричных правильных многогранников. Внешняя форма кристалла отражает анизотропию и симметрию его скоростей роста.
В свою очередь, анизотропия скоростей роста определяется структурой кристалла. Поэтому природная многогранная форма наглядно характеризует закономерность структуры кристалла и позволяет судить о симметрии его свойств.
Кристаллы способны самоограняться, т. е. при определенных условиях принимают естественную многогранную форму. Шарик, вырезанный из кристалла кварца или квасцов, в растворе этого же соединения покрывается гранями, в то время как шарик из кварцевого стекла остается неизменным. То же самое произойдет и с обломками этих веществ. Этот пример иллюстрирует не только способность кристаллов самоограняться, но и их анизотропию, проявляющуюся в различии скоростей роста по разным направлениям, а также симметрию. Процесс огранения - результат правильного внутреннего строения кристаллического вещества.
Рис. 5. Схема параллельного нарастания граней кристалла. Стрелками изображены нормали к граням |
Закон постоянства гранных углов.
Когда кристалл растет, частицы выстраиваются в закономерные и симметричные ряды, сетки, решетки. Грани кристаллических многогранников соответствуют плоскостям, составленным из материальных частиц, ребра кристалла — линиям пересечения этих плоскостей, т. е. рядам материальных частиц. Кристалл растет так, что частицы вещества из окружающей среды отлагаются на его гранях. Грани нарастают параллельно самим себе (рис. 5). Меняются площади граней, их форма, какие-то грани могут вытесняться соседними и зарастать, но взаимный наклон граней остается неизменным. Поэтому углы между гранями тоже остаются постоянными.
В этом заключается количественный закон кристаллографии, открытый Николаем Стеноном (1669) — закон постоянства углов:
во всех кристаллах данного вещества при одинаковых условиях углы между соответствующими гранями кристаллов постоянны.
В законе под одинаковыми условиями понимаются одинаковые температура и давление. Тем самым подразумевается, что, если у вещества есть несколько полиморфных модификаций, речь здесь идет об одной модификации.
Кристаллы разных веществ отличаются друг от друга внешней формой. У кристаллов одного и того же вещества облик может оказаться совсем различным, размеры, формы и даже число граней разные, но углы между соответствующими гранями кристаллов одного вещества всегда постоянны.
Закон постоянства углов дает возможность свести все многообразие форм кристаллических многогранников к совокупности углов между гранями и изобразить их с помощью проекции.
Первые представления о структуре кристалла были сформулированы еще в XVIII и XIX вв., задолго до открытия дифракции рентгеновских лучей, только на основании изучения симметрии природных многогранников.
Итак, симметрия, периодичность и закономерность структуры - основные характеристики кристаллического состояния вещества.
Поэтому основным методом кристаллографии является установление симметрии явлений, свойств, структуры и внешней формы кристаллов.