Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Supersymmetry. Theory, Experiment, and Cosmology

.pdf
Скачиваний:
79
Добавлен:
01.05.2014
Размер:
12.6 Mб
Скачать

Bibliography 499

[185]S.B. Giddings, S. Kachru, and J. Polchinski. Hierarchies from fluxes in string compactification. Phys. Rev., D66:106006, 2002.

[186]E. Gildener. Gauge symmetry hierarchies. Phys. Rev., D14:1667, 1976.

[187]P. Ginsparg. Applied conformal field theory. In E. Br´ezin and J. Zinn-Justin, editors, Fields, strings and critical phenomena (Les Houches, Session XLIX, 1988). Elsevier Science Publishers, 1989.

[188]L. Girardello and M.T. Grisaru. Soft breaking of supersymmetry. Nucl. Phys., B194:65–76, 1982.

[189]G.F. Giudice, M. Luty, H. Murayama, and R. Rattazzi. Gaugino mass without singlets. JHEP, 9812:027, 1998.

[190]G.F. Giudice and A. Masiero. A natural solution to the µ problem in supergravity theories. Phys. Lett., B206:480–484, 1988.

[191]G.F. Giudice, M. Peloso, A. Riotto, and I. Tkachev. Production of massive fermions at preheating and leptogenesis. JHEP, 9908:014, 1999.

[192]G.F. Giudice and A. Romanino. Split supersymmetry. Nucl. Phys., B699:65, 2004.

[193]S.L. Glashow and J. Iliopoulos and L. Maiani. Phys. Rev., D2:1285, 1970.

[194]F. Gliozzi, J. Scherk, and D. Olive. Supersymmetry, supergravity theories, and the dual spinor model. Nucl. Phys., B122:253, 1977.

[195]H. Goldberg. Constraint on the photino mass from cosmology. Phys. Rev. Lett., 50:1419, 1983.

[196]S.I. Goldberg. Curvature and homology. Dover, 1982.

[197]M. Goldhaber, L. Grodzins, and A.W. Sunyar. Helicity of neutrinos. Phys. Rev., 109:1015–1017, 1982.

[198]J. Goldstone. Field theories with superconductor solutions. Nuovo Cimento, 19:154–164, 1961.

[199]A.S. Goncharov, A.D. Linde, and M.J. Visotsky. Cosmological problems for spontaneously broken supergravity. Phys.Lett., 147B:279–283, 1984.

[200]P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, and E.A. Baltz. Darksusy: a numerical package for supersymmetric dark matter calculations. pages astro–ph/0211238.

[201]P. Gondolo and J. Silk. Dark matter annihilation at the galactic center. Phys. Rev. Lett., 83:1719–1722, 1999.

[202]M. W. Goodman and E. Witten. Detectability of certain dark-matter candidates. Phys. Rev., D31:3059–3063, 1985.

[203]T. Goto and T. Nihei. E ect of an RRRR dimension 5 operator on the proton decay in the minimal SU(5) SUGRA GUT model. Phys. Rev., D59:115009, 1999.

[204]A. Gould. Resonant enhancements in Wimp capture by the Earth. Astrophys. J., 321:571, 1987.

[205]M.B. Green and J.H. Schwarz. Anomaly cancellations in supersymmetric d = 10 gauge theory and superstring theory. Phys. Lett., B149:117, 1984.

[206]K. Griest and D. Seckel. Cosmic asymmetry, neutrinos, and the Sun. Nucl. Phys., B283:681, 1987.

500Bibliography

[207]K. Griest and D. Seckel. Three exceptions in the calculation of relic abundances. Phys. Rev., D43:3191–3203, 1991.

[208]B. Grinstein. A supersymmetric SU(5) gauge theory with no gauge hierarchy problem. Nucl. Phys., B206:387, 1982.

[209]M.T. Grisaru, A. Karlhede, and M. Rocek. The superhiggs e ect in superspace. Phys. Lett., B120:110, 1983.

[210]M. Grisaru, M. Rocek, and W. Siegel. Improved methods for supergraphs. Nucl. Phys., B159:429, 1979.

[211]J.-F. Grivaz. Status of susy searches. Czech. J. Phys., 54:Suppl. A, 1984.

[212]D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm. Heterotic string theory (i). the free heterotic string. Nucl. Phys., B256:253, 1985.

[213]D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm. Heterotic string theory (ii). the interacting heterotic string. Nucl. Phys., B267:75, 1986.

[214]A.H. Guth. The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev., D23:347–356, 1981.

[215]R. Haag, J. Lopuszanski, and M. Sohnius. All possible generators of supersymmetries of the S-matrix. Nucl. Phys., B88:257–274, 1975.

[216]H.E. Haber and R. Hempfling. Can the mass of the lightest Higgs boson of the Minimal Supserymmetric Model be larger than mz ? Phys. Rev. Lett., 66:1815–1818, 1991.

[217]H.E. Haber. Nucl. Phys. Proc. Suppl., 62:469, 1998.

[218]J. Halliwell. Scalar fields in cosmology with an exponential potential. Phys. Lett., B185:341, 1987.

[219]L.J. Hall, V.A. Kostelecky, and S. Raby. New flavor violations in supergravity models. Nucl. Phys., B267:415, 1986.

[220]L. Hall, R. Rattazzi, and U. Sarid. The top quark mass in supersymmetric SO(10) unification. Phys. Rev., D50:7048–7065, 1994.

[221]E. Halyo. Hybrid inflation from supergravity D terms. Phys. Lett., B387:43–47, 1996.

[222]J.A. Harvey. Magnetic monopoles, duality and supersymmetry. In E. Gava and A. Masiero and K.S. Narain and S. Randjbar-Daemi and Q. Shafi, 1995 Trieste Summer School in High Energy Physics and Cosmology, pages 66–125. World Scientific, 1996.

[223]P. Hasenfratz, and G. ’t Hooft, (1976). A fermion-boson puzzle in a gauge theory,

Phys. Rev. Lett., 36:1119, 1976.

[224]C.T. Hill. Quark and lepton masses from renormalization-group fixed points. Phys. Rev., D 24:691–703, 1981.

[225]G. Hinshaw et al. Three year WMAP observations: temperature analysis, arXiv:astroph/0603451, 2006.

[226]Y. Hosotani. Dynamical mass generation by compact extra dimensions. Phys. Lett., 126B:309–313, 1983.

[227]P. Ho˘rava and E. Witten. Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys., B475:94, 1996.

Bibliography 501

[228]P. Ho˘rava and E. Witten. Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys., B460:506, 1996.

[229]P. Huet and A.E. Nelson. Electroweak baryogenesis in supersymmetric models. Phys. Rev., D53:4578–4597, 1996.

[230]L.E. Ib´a˜nez, C. L´opez, and C. Mu˜noz. The low-energy supersymmetric spectrum according to N = 1 supergravity GUTS. Nucl. Phys., B256:218–252, 1985.

[231]L.E. Ib´a˜nez and C. L´opez. N=1 supergravity, the weak scale and the low-energy particle spectrum. Nucl. Phys., B233:511–544, 1984.

[232]L.E. Ib´a˜nez and G.G. Ross. Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model. Nucl. Phys., B368:3–37, 1992.

[233]L.E. Ib´a˜nez and G.G. Ross. Fermion masses and mixing angles from gauge symmetries. Phys. Lett., B332:100, 1994.

[234]L.E. Ib´a˜nez. Computing the weak mixing angle from anomaly cancellation. Phys. Lett., B 303:55–62, 1993.

[235]J. Iliopoulos and B. Zumino. Broken supergauge symmetry and renormalization. Nucl. Phys., B76:310, 1974.

[236]R. Jackiw and C. Rebbi. Spin from isospin in a gauge theory. Phys. Rev. Lett., 36:1116, 1976.

[237]R. Jackiw and P. Rossi. Zero modes of the vortex-fermion system. Nucl. Phys., B190:681–691, 1981.

[238]C. Jarlskog. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP violation. Phys. Rev. Lett., 55:1039, 1985.

[239]T.F. Jordan. Restrictions implied by Lorentz and spin invariance for scattering amplitudes. Phys. Rev., 139:B149–B150, 1965.

[240]M. Joyce. Electroweak baryogenesis and the expansion rate of the universe. Phys. Rev., D55:1875–1878, 1997.

[241]B. Julia and A. Zee. Poles with both magnetic and electric charges in non-abelian gauge theories. Phys. Rev., D11:2227–2232, 1975.

[242]G. Jungman and M. Kamionkowski and K. Griest. Supersymmetric dark matter. Phys. Lett., 267:195–373, 1996.

[243]S. Kachru, R. Kallosh, A. Linde, and S.P. Trivedi. De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003.

[244]M. Kalb and P. Ramond. Classical direct interstring action. Phys. Rev., D9:2273– 2284, 1974.

[245]T. Kaluza. On the problem of unity in physics. Sitzungsber. Preuss Akad. Wiss. Berlin Math. Phys., 1921.

[246]G.L. Kane and S. F. King. Natural implications of LEP results. Phys. Lett., B451:113, 1999.

[247]V.S. Kaplunovsky and J. Louis. On gauge couplings in string theory. Nucl. Phys., B444:191, 1995.

[248]M.Yu. Khlopov and A.D. Linde. Is it easy to save the gravitino? Phys. Lett., B138:265–268, 1984.

502Bibliography

[249]T.W.B. Kibble. Topology of cosmic domains and strings. J. Phys. A, 9:1387– 1398, 1976.

[250]J.E. Kim and H.P. Nilles. The µ problem and the strong CP problem. Phys. Lett., 138B:150, 1984.

[251]O. Klein. Quantum theory and 5-dimensional relativity. Z. Phys., 37:895, 1926.

[252]R. Kleiss. Derivation of the minimal Standard Model lagrangian. In A. Zichichi, editor, 1990 Erice Summer School: Physics up to 200 TeV, pages 93–141, 1990.

[253]M. Knecht, A. Ny eler, M. Perrottet, and E. de Rafael. Hadronic light by light scattering contribution to the muon g − 2: an e ective field theory approach. Phys. Rev. Lett., 88:071802, 2002.

[254]M. Kobayashi and M. Maskawa. Prog. Theor. Phys., 49:652, 1973.

[255]C.S. Kochanek. Gravitational lensing limits on cold dark matter and its variants. Astrophys. J., 453:545, 1995.

[256]C. Kolda and D. Lyth. Quintessential di culties. Phys. Lett., B458:197–201, 1999.

[257]C. Kolda and H. Murayama. The Higgs mass and new physics scales in the minimal Standard Model. JHEP, 0007:035, 2000.

[258]H. Komatsu. New constraints on parameters in the minimal supersymmetric model. Phys. Lett., B215:323, 1988.

[259]Konishi, K. Phys. Lett., 135B:439, 1984.

[260]E.J. Konopinski and H. Mahmoud. The universal Fermi interaction. Phys. Rev., 92:1045–1049, 1953.

[261]Koppenburg, P. et al. [Belle Collaboration]. Inclusive measurement of the photon energy spectrum in b → sγ decays. Phys. Rev. Lett., 93, 061803, 2004.

[262]N.V. Krasnikov. On supersymmetry breaking in superstring theories. Phys. Lett. B., 193:37–40, 1987.

[263]L.M. Krauss and F. Wilczek. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62:1221–1223, 1989.

[264]K. Kumekawa, T. Moroi, and T. Yanagida. Flat potential for inflaton with a discrete R invariance in supergravity. Progr. Theor. Phys., 92:437–448, 1994.

[265]A. Kusenko, P. Langacker, and G. Segr`. Phase transitions and vacuum tunneling into chargeand colorbreaking minima in the MSSM. Phys. Rev., D54:5824– 5834, 1996.

[266]V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov. Classical direct interstring action. Phys. Lett., 155:36, 1985.

[267]L.D. Landau, A.A. Abrikosov, and I.M. Khalatnikov. Dokl. Akad. Nauk. SSSR, 95:1177, 1954.

[268]B. Lee, C. Quigg, and H. Thacker. Weak interactions at very high energy: the role of the Higgs boson mass. Phys. Rev., D16:1519, 1977.

[269]T.D. Lee and C.N. Yang. Phys. Rev., 104:254, 1956.

[270]LEP Higgs working group, ALEPH, DELPHI, L3, and OPAL experiments.

[271]LEP Higgs working group, ALEPH, DELPHI, L3, and OPAL experiments. LHWG- Note-2004-01.

Bibliography 503

[272]M. Leurer, Y. Nir, and N. Seiberg. Mass matrix models. Nucl. Phys., B398:319– 342, 1993.

[273]M. Leurer, Y. Nir, and N. Seiberg. Mass matrix models: the sequel. Nucl. Phys., B420:468–504, 1994.

[274]A.D. Linde. Chaotic inflation. Phys. Lett., 129B:177–181, 1983.

[275]A.D. Linde. Particle physics and inflationary cosmology, volume 5 of Contemporary Concepts in Physics. Harwood Academic Publishers, 1990.

[276]A.D. Linde. Axions in inflationary cosmology. Phys. Lett., 259B:38–47, 1991.

[277]M. Lindner. Implications of triviality for the Standard Model. Z. Phys., C31: 295–300, 1986.

[278]M.A. Luty and W. Taylor IV. Varieties of vacua in classical supersymmetric gauge theories. Phys. Rev., D53:3399–3405, 1996.

[279]G. Mack. All unitary ray representations of the conformal group SU(2,2) with positive energy. Comm. math. Phys., 55:1–28, 1977.

[280]Z. Maki, M. Nakagawa, and S. Sakata. Prog. Theor. Phys., 28:870, 1962.

[281]N. Manton. The force between ’t Hooft-Polyakov monopoles. Nucl. Phys., B126:525–541, 1977.

[282]W. Marciano, G. Valencia, and S. Willenbrock. Renormalization group-improved unitarity bounds on the Higgs boson and top quark masses. Phys. Rev., D40:1725– 1729, 1989.

[283]E. Martinec. Nonrenormalization theorems and fermionic string finiteness. Phys. Lett., 171B:189, 1986.

[284]A. Masiero and D.V. Nanopoulos and K. Tamvakis and T. Yanagida. Naturally massless Higgs doublets in supersymmetric SU(5). Phys. Lett., 115:380, 1982.

[285]S. Mattig. Astron. Nachr., 284:109, 1958.

[286]Y. Mellier. Probing the universe with weak lensing. Ann. Rev. Astron. Astrophys., 37:127–189, 1999.

[287]C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. W.H. Freeman and company, 1972.

[288]C. Montonen and D.I. Olive. Magnetic monopoles as gauge particles? Phys. Lett., 72B:117–120, 1977.

[289]B. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake. Mon. Not. Roy. Astronom. Soc., 310:1147, 1999.

[290]H. Murayama and A. Pierce. Not even decoupling can save minimal supersymmetric SU(5). Phys. Rev., D65:055009, 2002.

[291]H. Murayama. A model of direct gauge mediation. Phys. Rev. Lett., 79:18–21, 1997.

[292]D.V. Nanopoulos and K. Tamvakis. Susy Guts:4 - Guts:3. Phys.Lett., B113:151, 1952.

[293]J.F. Navarro, C.S. Frenk, and S.D.M. White. A universal density profile from hierarchical clustering. Astrophys. J., 490:493–508, 1997.

[294]A. Neveu and J.H. Schwarz. Factorizable dual model of pions. Nucl. Phys., B31:86, 1971.

504Bibliography

[295]H.P. Nilles, M. Srednicki, and D. Wyler. Weak interaction breakdown induced by supergravity. Phys. Lett., B120:346, 1983.

[296]Y. Nir and G. Raz. Quark-squark alignment revisited. Phys. Rev., D66:035007, 2002.

[297]Y. Nir and N. Seiberg. Should squarks be degenerate? Phys. Lett., B309:337–343, 1993.

[298]V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov. Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus. Nucl. Phys., B229:381, 1983.

[299]Y. Okada, M. Yamaguchi, and T. Yanagida. Upper bound of the lightest Higgs boson mass in the Minimal Supersymmetric Standard Model. Prog. Theor. Phys., 85:1–6, 1991.

[300]L. O’Raifeartaigh. Spontaneous symmetry breaking for chiral scalar superfields. Nucl. Phys., B96:331–352, 1975.

[301]H. Osborn. Topological charges for N= 4 supersymmetric gauge theories and monopoles of spin 1. Phys. Lett., 83B:321, 1979.

[302]J.C. Pati and A. Salam. Lepton number a the fourth color. Phys. Rev., D10:275– 289, 1974.

[303]R. Peccei and H. Quinn. Phys. Rev. Lett., 38:1440, 1977.

[304]P.J.E. Peebles and B. Ratra. Cosmology with a time-variable cosmological constant. Astrophys. J., 325:L17–L20, 1988.

[305]P.J.E. Peebles and A. Vilenkin. Quintessential inflation. Phys. Rev., D59:063505, 1999.

[306]B. Pendleton and G.G. Ross. Mass and mixing angle prediction from infrared fixed points. Phys. Lett., B98:291, 1981.

[307]M.E. Peskin and T. Takeuchi. A new constraint on a strongly interacting Higgs sector. Phys. Rev. Lett., 65:964–967, 1990.

[308]M.E. Peskin and T. Takeuchi. Estimation of oblique electroweak corrections. Phys. Rev., D46:381–409, 1992.

[309]J. Polchinski and M. Wise. The electric dipole moment of the neutron in lowenergy supergravity. Phys. Lett., B125:393, 1983.

[310]J. Polchinski. Renormalization and e ective lagrangians. Nucl. Phys., B231: 269–295, 1984.

[311]J. Polchinski. Dirichlet-Branes and Ramond-Ramond charges. Phys. Rev. Lett., 75:4724–4727, 1995.

[312]J. Polchinski. String theory, volume I and II. Cambridge University Press, 1998.

[313]J. Polonyi. Generalization of the massive scalar multiplet coupling to the supergravity. 1977. unpublished preprint KFKI-77-93.

[314]E. Poppitz and S. Trivedi. New models of gauge and gravity mediated supersymmetry breaking. Phys. Rev., D55:5508–5519, 1997.

[315]M.K. Prasad and C.M. Sommerfield. Exact classical solutions for the ’t Hooft monopole and the Julia-Zee dyon. Phys. Rev. Lett., 35:760–762, 1975.

[316]R. Rajaraman. Solitons and Instantons. North-Holland, 1998.

Bibliography 505

[317]P. Ramond. Dual theory for free fermions. Phys. Rev., D3:2415–2418, 1971.

[318]P. Ramond. Field theory, a modern primer, 2nd edition. Frontiers in Physics. Addison-Wesley, 1990.

[319]L. Randall and R. Sundrum. An alternative to compactification. Phys. Rev. Lett., 83:4690–4693, 1999.

[320]L. Randall and R. Sundrum. Out of this world supersymmetry breaking. Nucl. Phys., B557:79, 1999.

[321]W. Rarita and J. Schwinger. On a theory of particles of half-integral spin. Phys. Rev., 60:61, 1941.

[322]B. Ratra and P.J.E. Peebles. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev., D37:3406, 1988.

[323]J. Rich, Fundamentals of cosmology, Springer 2001.

[324]R. Rohm and E. Witten. The antisymmetric tensor field in supersymmetric theory. Ann. of Phys., 170:454, 1986.

[325]G.G. Ross. Textures and flavour models. In S. Lavignac J. Orlo and M. Cribier, editors, Seesaw 25, pages 81–98. World Scientific, 2004.

[326]A.D. Sakharov. Violation of CP invariance, C asymmetry and baryon asymmetry of the universe. JETP Lett., 5:24–27, 1967.

[327]A. Salam and J. Strathdee. Supersymmetry, parity and fermion-number conservation. Nucl. Phys., B97:293, 1975.

[328]P. Salomonson and J.W. van Holten. Fermionic coordinates and supersymmetry in quantum mechanics. Nucl. Phys., B196:509–531, 1982.

[329]J. Scherk and J.H. Schwarz. Dual models for non-hadrons. Nucl. Phys., B81:118, 1974.

[330]J. Scherk and J.H. Schwarz. How to get masses from extra dimensions. Nucl. Phys., B153:61–88, 1979.

[331]J. Scherk. Extended supersymmetry and supergravity theories. In Advanced Study Institute on Gravitation: Recent developments, Carg`ese, 1978.

[332]J. Schwinger. A magnetic model of matter. Science, 165:757–761, 1969.

[333]N. Seiberg and E.Witten. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys., B426:19, 1994.

[334]N. Seiberg and E.Witten. Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys., B431:484, 1994.

[335]N. Seiberg. Exact results on the space of vacua of four-dimensional SUSY gauge theories. Phys. Rev., D49:6857–6863, 1994.

[336]N. Seiberg. Electric-magnetic duality in supersymmetric nonabelian gauge theories. Nucl. Phys., B435:129–146, 1995.

[337]M.A. Shifman and A.I. Vainshtein. Solutions of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion. Nucl. Phys., B277:456–486, 1986.

[338]M.A. Shifman and A.I. Vainshtein. On holomorphic dependence and infrared e ects in supersymmetric gauge theories. Nucl. Phys., B359:571–580, 1991.

506Bibliography

[339]M.A. Shifman. Beginning supersymmetry. Supersymmetry in quantum mechanics. ITEP lectures on particle physics and field theory, 1:301–344, 1995.

[340]W. Siegel. Supersymmetric dimensional regularization via dimensional reduction. Phys.Lett., 84B:193–195, 1979.

[341]P. Sikivie, L. Susskind, Voloshin, and Zakharov. Isospin breaking in technicolor models. Nucl. Phys., B173:189, 1980.

[342]M. Sohnius. Introducing supersymmetry. Phys.Rep., C 128:39–204, 1985.

[343]D. Spergel and U. Pen. Cosmology in a string dominated universe. Astrophys. J., 491:L67–L71, 1997.

[344]B. Spokoiny. Deflationary universe scenario. Phys. Lett., B315:40–45, 1993.

[345]E.D. Stewart. Inflation, supergravity, and superstrings. Phys. Rev., D51:6847– 6853, 1995.

[346]E.C.G. Sudarshan and R.E. Marshak. Chirality invariance and the universal Fermi interaction. Phys. Rev., 109:1860–1862, 1958.

[347]L. Susskind. Lattice models of quark confinement at high temperature. Phys. Rev., D20:2610–2618, 1979.

[348]P.K. Townsend. Cosmological constant in supergravity. Phys. Rev., D15:2802– 2804, 1977.

[349]G. ’t Hooft. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. In Recent developments in gauge theories (NATO ASI Series B: Physics Vol. 59), pages 135–157. Plenum Press, 1979.

[350]J.-Ph. Uzan. The fundamental constants and their variation: observational status and theoretical motivation. Rev. Mod. Phys., 75:403, 2003.

[351]M. Veltman, Acta Phys. Polon., B8:475, 1977.

[352]M. Veltman. Acta Phys. Polon., B12:437, 1981.

[353]G. Veneziano and S. Yankielowicz. An e ective lagrangian for the pure N=1 supersymmetric Yang-Mills theory. Phys. Lett., 113B:231–236, 1982.

[354]G. Veneziano. Construction of a crossing-symmetric, Regge-behaved amplitude for linearly-rising trajectories. Nuovo Cim., 57A:190, 1968.

[355]A. Vilenkin. String dominated universe. Phys. Rev. Lett., 53:1016–1018, 1984.

[356]L. Wambsganss, R. Cen, J.P. Ostriker, and E.L. Turner. Science, 268:274, 1995.

[357]E. Weinberg. Parameter counting for multimonopole solutions. Phys. Rev., D20:936–944, 1979.

[358]E. Weinberg. Index calculations for the fermion-vortex system. Phys. Rev., D24:2669, 1981.

[359]S. Weinberg. Implications of dynamical symmetry breaking: an addendum. Phys. Rev., D19:1277–1280, 1979.

[360]S. Weinberg. Cosmological constraints on the scale of supersymmetry breaking. Phys. Rev. Lett., 48:1303–1306, 1982.

[361]S. Weinberg. The cosmological constant. Rev. Mod. Phys., 61:1, 1989.

[362]J. Wess and J. Bagger. Supersymmetry and Supergravity. Princeton Series in Physics. Princeton University Press, Princeton, 1983. 2nd edition 1992.

Bibliography 507

[363]J. Wess and B. Zumino. Supergauge invariant extension of quantum electrodynamics. Nucl. Phys., B78:1–13, 1974.

[364]J. Wess and B. Zumino. Supergauge transformations in four dimensions. Nucl. Phys., B70:39–50, 1974.

[365]C. Wetterich. Cosmology and the fate of dilatation symmetry. Nucl. Phys., B302:668, 1988.

[366]C.M. Will. Theory and experiment in gravitational physics. Cambridge University Press, 1993.

[367]K. Wilson. Renormalization group and critical phenomena. Phys. Rev., B4:3174, 3184, 1971.

[368]E. Witten and D. Olive. Supersymmetry algebras that include topological charges. Phys. Lett., 78B:97–101, 1978.

[369]E. Witten and D. Olive. Supersymmetry algenras that include topological charges. Phys. Lett., 78B:97–101, 1978.

[370]E. Witten. Dyons of charge eθ/2π. Phys. Lett., 86B:283–287, 1979.

[371]E. Witten. Dynamical breaking of supersymmetry. Nucl. Phys., B188:513, 1981.

[372]E. Witten. Mass hierarchies in supersymmetric theories. Phys. Lett., B105:267, 1981.

[373]E. Witten. Constraints on supersymmetry breaking. Nucl. Phys., B202:253–316, 1982.

[374]E. Witten. Introduction to supersymmetry. In A. Zichichi, International School of Sunuclear Physics, Erice 1981, page 305. Plenum Press, 1983.

[375]E. Witten. Dimensional reduction of superstring models. Phys. Lett., 155B:151, 1985.

[376]E. Witten. Superconducting strings. Nucl. Phys., B249:557–592, 1985.

[377]E. Witten. New issues in manifolds of SU(3) holonomy. Nucl. Phys., B268:79, 1986.

[378]E. Witten. Strong coupling expansion of Calabi-Yau compactification. Nucl. Phys., B471:135, 1996.

[379]L. Wolfenstein. Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett., 51:1945–1947, 1983.

[380]LEP SUSY working group, ALEPH, DELPHI, L3, and OPAL experiments.

[381]T.T. Wu and C.N. Yang. Concept of non-integrable phase factors and global formulation of gauge fields. Phys. Rev., D12:3845–3857, 1975.

[382]C.S. Wu, et al. Experimental test of parity conservation in beta decay. Phys. rev., 105:1413–1415, 1957.

[383]T. Yanagida. In Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan, 1979.

[384]C.N. Yang and R.L. Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys.Rev., 96:191–195, 1954.

[385]A. Zee. A theory of lepton number violation, neutrino majorana mass, and oscillation. Phys. Lett., B93:389, 1980. Erratum-ibid.B95 (1980) 461.

[386]Ya.B. Zeldovich. DAN SSSR, 86:505, 1952.

508Bibliography

[387]I. Zlatev, L. Wang, and P.J. Steinhardt. Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett., 82:896–899, 1999.

[388]B. Zumino. Normal forms of complex matrices. J. Math. Phys., 3:1055–1057, 1962.

[389]B. Zumino. Supersymmetry and K¨ahler manifolds. Phys. Lett., 87B:203–206, 1979.

[390]D. Zwanziger. Quantum field theory of particles with both electric and magnetic charges. Phys. Rev., 176:1489–1495, 1968.