
- •1.Электрические заряды. Закон сохранения зарядов. Закон кулона.Электрическая постоянная
- •2.Электростатическое поле. Напряженность поля. Поле точеного заряда и системы зарядов. Приницп суперпозиции.
- •3.Элекктрическое поле диполя. Применение Применение принципа суперпозиции для расчета полей.
- •4.Графическое изображения электростатичеких полей. Направление вектора напряженности.
- •5.Теорема Остроградского-Гаусса для электростатического поля.
- •6.Применение теоремы Гаусса для расчета полей.
- •7.Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •8.Потенциал и разность потенциалов точек электростатического поля. Потенциалы полей точечного заряда и системы зарядов.
- •9.Эквипотенциальные поверхности и их свойства. Связь напряженности электрического поля с его потенциалом.
- •10.Элекктроемкость проводников. Конденсаторы. Вывод форумулы емкости плоского конденсатора.Виды конденсаторов.
- •11.Энергия системы зарядов и заряженного проводника.
- •12.Энергия заряженного конденсатора. Энергия и плотность энергии электростатического поля.
- •13.Диэлектрики в электрическом поле. Поляризация диэлектрика. Вектор поляризации и его связь с напряженностью поля.
- •14.Напряженность диэлектрического поля в диэлектрике. Относительная диэлектрическая проницаемость и ее связь с диэлектрической восприимчивостью.
- •15.Электростатическое поле на границе двух диэлектриков. Вектор электростатической индукции. Теорема Гаусса для электростатической индукции.
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •16.Электрическое поле заряженных проводников. Напряженность поля у поверхности заряженного проводника.
- •17.Электрический ток. Условия его существования. Сила и плотность тока. Единицы силы тока в системе си.
- •18.Закон для участка цепи. Электрическое сопротивление проводников и его зависимость от температуры. Сверхпроводимость.
- •19.Работа и мощность тока. Закон Джоуля-Ленца. Тепловое действие тока и его применение.
- •20.Вывод законов Ома и Джоуля-Ленца в дифференциальной форме.
- •21. Правила Киргхофа и их применение для расчета разветвленных электрических цепей.
- •22.Закон Ома для замкнутой цепи. Э.Д.С. Источника тока. Режим работы источника.
- •23.Основные положения и опытное обоснование классической электронной теории электропроводности металлов.
- •24.Вывод закона Ома по электронной теории.
- •25. Вывод закона Джоуля – Ленца по электронной теории.
- •26.Закон Видемана-Франца. Связь между электро и теплопроводностью металлов и ее объяснение электронной теорией.
- •27.Термоэлектронная эмиссия и ее применение.
- •28.Термоэлектрические явления и их применение.
- •29.Магнитное поле проводников с током. Индукция магнитного поля. Графическое изображение магнитных полей.
- •30. Действие магнитного поля на проводник с током. Закон Ампера. Единицы измерения магнитной индукции.
- •31.Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- •32. Действие магнитного поля на контур с током. Магнитный момент контура с током.
- •33.Закон Био-Савара-Лапласса. Напряженность магнитного поля. Магнитная постоянная.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •35.Циркуляция вектора магнитной индукции. Закон полного тока и его
- •36.Явление электромагнитной индукции. Закон Фарадея и правило Ленца
- •§ 122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •37. Магнитное поле движущейся заряженной частицы.
- •38. Движение заряженных частиц в магнитном поле. Сила Лоренца.
- •§114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •39. Электрический ток в витке, движущемся в однородном магнитном
- •40. Явления самоиндукции. Индуктивность.
- •41.Влияние индуктивности на величину тока в цепи.
- •42.Явление взаимной индукции. Взаимная индуктивность.
- •43.Энергия м плотность энергии магнитного поля.
- •44.Электромагнитные колебаний в колебательном контуре. Период колебаний.
- •45. Незатухающие и затухающие колебания в колебательном контуре.
- •46. Ток смещения. Плотность тока смещеня.
- •47.Электромагнитное поле. Уравнение Максвелла в интегральной форме.
- •48.Электромагнитные волны. Их энергия и скорость распространения. Виды электромагнитных волн.
- •1.Электрические заряды. Закон сохранения зарядов. Закон Кулона.
46. Ток смещения. Плотность тока смещеня.
Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно существовать и обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.
Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 196). Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор
«протекают»
токи смещения, причем в тех участках,
где отсутствуют проводники.
Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полями. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток проводимости, равный току в подводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Iсм) равны: Iсм=I. Ток проводимости вблизи обкладок конденсатора
(поверхностная плотность заряда на обкладках равна электрическому смещению D в конденсаторе (см. (92.1)). Подынтегральное выражение в (138.1) можно рассматривать как частный случай скалярного произведения (дD/дt)dS, когда дD/дt и dS взаимно параллельны. Поэтому для общего случая можно записать
Сравнивая
это выражение с I=Iсм
=
(см. (96.2)), имеем
Выражение (138.2) и было названо Максвеллом плотностью тока смещения.
Рассмотрим, каково же направление векторов плотностей токов проводимости и смещения j и jсм. При зарядке конденсатора (рис. 197, а) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой; поле в конденсаторе усиливается, вектор D растет со временем;
следовательно, дD/дt>0, т.е. вектор дD/дt
направлен в ту же сторону, что и D. Из рисунка видно, что направления векторов
дD/дt и j совпадают. При разрядке конденсатора (рис. 197, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой; поле в конденсаторе ослабляется, вектор D убывает со временем; следовательно, дD/дt<0, т. е. вектор at
дD/дt направлен противоположно вектору
D. Однако вектор дD/дt направлен опять так
же, как и вектор j. Из разобранных примеров следует, что направление вектора j, а следовательно, и вектора jсм совпадает
с направлением вектора дD/дt,
как это и следует из формулы (138.2).
Подчеркнем, что из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно — способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле (линии индукции магнитных полей токов смещения при зарядке и разрядке конденсатора показаны на рис. 197 штриховой линией).
В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D=0E+P, где Е — напряженность электростатического поля, а Р — поляризованность (см. § 88), то плотность тока смещения
где 0дE/дt — плотность тока смещения
от
в вакууме, дP/дt — плотность тока поляризации — тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Возбуждение магнитного поля токами поляризации правомерно, так как токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая
(0 дE/дt),
часть плотности тока смещения (0дE/дt),
не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени электрического поля приводит к возникновению в окружающем пространстве магнитного поля.
Следует отметить, что название «ток смещения» является условным, а точнее — исторически сложившимся, так как ток смещения по своей сути — это изменяющееся со временем электрическое поле. Ток смещения поэтому существует не только в вакууме или диэлектриках, но и внутри проводников, по которым течет переменный ток. Однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально советским физиком А. А. Эйхенвальдом, изучавшим магнитное поле тока поляризации, который, как следует из (138.3), является частью тока смещения.
Максвелл ввел понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока
jполн=j+дD/дt.
Введя понятия тока смещения и полного тока, Максвелл по-новому подошел к рассмотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут,
т. е. на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.
Максвелл
обобщил теорему о циркуляции вектора
Н
(см. (133.10)), введя в ее правую часть полный
ток Iполн=
сквозь
поверхность S,
натянутую
на замкнутый контур L.
Тогда обобщенная
теорема о циркуляции вектора Н
запишется
в виде
Выражение (138.4) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.