
- •1.Электрические заряды. Закон сохранения зарядов. Закон кулона.Электрическая постоянная
- •2.Электростатическое поле. Напряженность поля. Поле точеного заряда и системы зарядов. Приницп суперпозиции.
- •3.Элекктрическое поле диполя. Применение Применение принципа суперпозиции для расчета полей.
- •4.Графическое изображения электростатичеких полей. Направление вектора напряженности.
- •5.Теорема Остроградского-Гаусса для электростатического поля.
- •6.Применение теоремы Гаусса для расчета полей.
- •7.Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •8.Потенциал и разность потенциалов точек электростатического поля. Потенциалы полей точечного заряда и системы зарядов.
- •9.Эквипотенциальные поверхности и их свойства. Связь напряженности электрического поля с его потенциалом.
- •10.Элекктроемкость проводников. Конденсаторы. Вывод форумулы емкости плоского конденсатора.Виды конденсаторов.
- •11.Энергия системы зарядов и заряженного проводника.
- •12.Энергия заряженного конденсатора. Энергия и плотность энергии электростатического поля.
- •13.Диэлектрики в электрическом поле. Поляризация диэлектрика. Вектор поляризации и его связь с напряженностью поля.
- •14.Напряженность диэлектрического поля в диэлектрике. Относительная диэлектрическая проницаемость и ее связь с диэлектрической восприимчивостью.
- •15.Электростатическое поле на границе двух диэлектриков. Вектор электростатической индукции. Теорема Гаусса для электростатической индукции.
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •16.Электрическое поле заряженных проводников. Напряженность поля у поверхности заряженного проводника.
- •17.Электрический ток. Условия его существования. Сила и плотность тока. Единицы силы тока в системе си.
- •18.Закон для участка цепи. Электрическое сопротивление проводников и его зависимость от температуры. Сверхпроводимость.
- •19.Работа и мощность тока. Закон Джоуля-Ленца. Тепловое действие тока и его применение.
- •20.Вывод законов Ома и Джоуля-Ленца в дифференциальной форме.
- •21. Правила Киргхофа и их применение для расчета разветвленных электрических цепей.
- •22.Закон Ома для замкнутой цепи. Э.Д.С. Источника тока. Режим работы источника.
- •23.Основные положения и опытное обоснование классической электронной теории электропроводности металлов.
- •24.Вывод закона Ома по электронной теории.
- •25. Вывод закона Джоуля – Ленца по электронной теории.
- •26.Закон Видемана-Франца. Связь между электро и теплопроводностью металлов и ее объяснение электронной теорией.
- •27.Термоэлектронная эмиссия и ее применение.
- •28.Термоэлектрические явления и их применение.
- •29.Магнитное поле проводников с током. Индукция магнитного поля. Графическое изображение магнитных полей.
- •30. Действие магнитного поля на проводник с током. Закон Ампера. Единицы измерения магнитной индукции.
- •31.Магнитный поток. Работа перемещения проводника с током в магнитном поле.
- •32. Действие магнитного поля на контур с током. Магнитный момент контура с током.
- •33.Закон Био-Савара-Лапласса. Напряженность магнитного поля. Магнитная постоянная.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •35.Циркуляция вектора магнитной индукции. Закон полного тока и его
- •36.Явление электромагнитной индукции. Закон Фарадея и правило Ленца
- •§ 122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •37. Магнитное поле движущейся заряженной частицы.
- •38. Движение заряженных частиц в магнитном поле. Сила Лоренца.
- •§114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •39. Электрический ток в витке, движущемся в однородном магнитном
- •40. Явления самоиндукции. Индуктивность.
- •41.Влияние индуктивности на величину тока в цепи.
- •42.Явление взаимной индукции. Взаимная индуктивность.
- •43.Энергия м плотность энергии магнитного поля.
- •44.Электромагнитные колебаний в колебательном контуре. Период колебаний.
- •45. Незатухающие и затухающие колебания в колебательном контуре.
- •46. Ток смещения. Плотность тока смещеня.
- •47.Электромагнитное поле. Уравнение Максвелла в интегральной форме.
- •48.Электромагнитные волны. Их энергия и скорость распространения. Виды электромагнитных волн.
- •1.Электрические заряды. Закон сохранения зарядов. Закон Кулона.
18.Закон для участка цепи. Электрическое сопротивление проводников и его зависимость от температуры. Сверхпроводимость.
Немецкий физик Г. Ом (1787—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на кон-
цах проводника:
I=U/R, (98.1)
где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника э.д.с.): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина
G=1/R
называется электрической проводимостью
проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения 5:
R=l/S. (98.2)
где — коэффициент пропорциональности, характеризующий материал проводника. Он называется удельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом-метр (Ом•м). Наименьшим удельным сопротивлением обладают серебро (1,6•10-8 Ом•м) и медь (1,7•10-8Ом•м). j=E. (98.5)
Выражение (98.5) — закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а следовательно, и сопротивления, с температурой описывается линейным законом:
где и 0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при t и 0 °С, — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Значит, температурная зависимость сопротивления может быть представлена в виде
R=R0T,
гдеТ
— термодинамическая
температура. Качественная температурная
зависимость сопротивления металла
представлена на рис. 147 (кривая 1).
Впоследствии
было обнаружено, что сопротивление
многих металлов (например, Al,
Pb,
Zn
и др.) и их сплавов при очень низких
температурах Тк
(0,14
— 20 К), называемых критическими,
характерных
для каждого ве-
щества, скачкообразно уменьшается до нуля (кривая 2), т.е. металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за низких их критических температур. Правда, в настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Применение же в качестве рабочего вещества термометра сопротивления полупроводников, приготовленных по специальной технологии,— термисторов — позволяет отмечать изменение температуры в миллионные доли кельвин и использовать термисторы для измерения температур в случае малых габаритов полупроводников.