Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вычисление нормы и чисел обусловленности матриц...docx
Скачиваний:
57
Добавлен:
13.08.2019
Размер:
100.25 Кб
Скачать

Вычисление собственных значений и сингулярных чисел

Во многих областях математики и прикладных наук большое значение имеют средства для вычисления собственных значений (собственных чисел, характеристических чисел, решений векового уравнения) матриц, принадлежащих им векторов и сингулярных чисел. В новой версии MATLAB собственные вектора нормализуются, иначе, чем в предыдущих. Основной критерий: либо V'V=I, либо V'BV=I, где V — собственный вектор, I — единичная матрица. Поэтому результаты вычислений в новой версии, как правило, отличаются. Ниже дан список средств решения векового уравнения, реализованных в системе MATLAB.

Несимметрические матрицы могут быть плохо обусловлены при вычислении их собственных значений. Малые изменения элементов матрицы, такие как ошибки округления, могут вызвать большие изменения в собственных значениях. Масштабирование — это попытка перевести каждую плохую обусловленность собственных векторов матрицы в диагональное масштабирование. Однако масштабирование обычно не может преобразовать несимметрическую матрицу в симметрическую, а только пытается сделать (векторную) норму каждой строки равной норме соответствующего столбца. Масштабирование значительно повышает стабильность собственных значений.

[D.B] = balance(A) — возвращает диагональную матрицу D, элементы которой являются степенями основания 2, и масштабированную матрицу В, такую, что B=D\A*D, а норма каждого ряда масштабированной матрицы приближается к норме столбца с тем же номером;

В = balance(A) — возвращает масштабированную матрицу В. Пример использования функции balance:

» А=[1 1000 10000;0.0001 1 1000;0.000001 0.0001 1]

А =

1.0е+004 *

0.0001 0.1000 1.0000

0.0000 0.0001 0.1000

0.0000 0.0000 0.0001

» [F,G]=balance(A)

F =

1.0e+004 *

3.2768 0 0

0 0.0032 0

0 0 0.0000

G =

1.0000 0.9766 0.0095

0.1024 1.0000 0.9766

1.0486 0.1024 1.0000

Величина, связывающая погрешность вычисления собственных значений с погрешностью исходных данных, называется числом обусловленности (собственных значений) матрицы и вычисляется следующим образом:

cond(V) = norm(V)*norm(inv(V)) где [V.D]=eig(A).[B=D\A*D, а норма каждого ряда масштабированной матрицы приближается к норме столбца с тем же номером;]

eig(A) — возвращает вектор собственных значений квадратной полной или симметрической разреженной матрицы А обычно после автоматического масштабирования, но для больших разреженных матриц (в терминологии MATLAB —

это просто полные матрицы со сравнительно большим [ Но небольшим по сравнению с числом нулей разреженной матрицы. Эталонное число нулей разреженной матрицы данного размера можно вычислить, применив к полной матрице этого же размера функцию sparse. — Примеч. ред. ] числом нулей), а также во всех случаях, где помимо собственных значений необходимо получать и собственные вектора разреженной матрицы, вместо нее рекомендовано использовать eigs(A);

eig(A,B) - возвращает вектор обобщенных собственных значений квадратных матриц А и В;

[V,D] = eig(A,B) — вычисляет диагональную матрицу обобщенных собственных значений D и матрицу V, столбцы которой являются соответствующими собственными векторами (правыми собственными векторами), таким образом что А V = В V D;

[V,D] = eig(A) — вычисляет диагональную матрицу собственных значений О матрицы А и матрицу V, столбцы которой являются соответствующими собственными векторами (правыми собственными векторами), таким образом что А V = V D.

Нужно использовать [W,D]=e1g(A'); W=W, чтобы вычислить левые собственные вектора, которые соответствуют уравнению W*A=D*W.

[V,D] = eig(A,'nobalance') — находит собственные векторы и собственные значения без предварительного масштабирования. Иногда это улучшает обусловленность входной матрицы, обеспечивая большую точность вычисления собственных векторов для необычно масштабированных матриц;

eig(A,B, 'chol') — возвращает вектор, содержащий обобщенные собственные значения, используя разложение матрицы В по методу Холецкого; если А - симметрическая квадратная матрица и В — симметрическая положительно определенная квадратная матрица, то eig(A.B) по умолчанию работает точно так же;

eig(A,B, 'qz') — не требует, чтобы матрицы были симметрическими и возвращает вектор, содержащий обобщенные собственные значения, используя QZ-алгоритм; при явном указании этого флага QZ-алгоритм используется вместо алгоритма Холецкого даже для симметрической матрицы и симметрической положительно определенной матрицы В, так как может давать более стабильные значения, чем предыдущий метод. Для несимметрических матриц в MATLAB 6 всегда используется QZ-алгоритм и параметр 'chol' или 'qz' игнорируется;

[V.D] = eig(A.B) — возвращает диагональную матрицу обобщенных собственных значений D и матрицу V, чьи столбцы являются соответствующими собственными векторами, так чтобы A*V=B*V*D.

Пример:

» B = [3 -12 -.6 2*eps;-2 48 -1 -eps;-eps/8 eps/2 -1 10;-.5 -.5 .3 1]

В =

3.0000 -12.0000 -0.60000.0000

-2.0000 48.0000-1.0000-0.0000

-0.0000 0.0000 -1.0000 10.0000

-0.5000 -0.5000 0.3000 1.0000

» [G,H]=eig(B)

G =

-0.2548 0.7420 -0.4842 0.1956

0.9670 0.0193 -0.0388 0.0276

-0.0015 -0.6181 -0.8575 0.9780

-0.0075 -0.2588 -0.1694 -0.0676

H =

48.5287 0 0 0

0 3.1873 0 0

0 0 0.9750 0

0 0 0 -1.6909

svd(X) — возвращает вектор сингулярных чисел. Команда svd выполняет сингулярное разложение матрицы X;

[U.S, V] = svd(X) — вычисляет диагональную матрицу S тех же размеров, которые имеет матрица X, с неотрицательными диагональными элементами в порядке их убывания, и унитарные матрицы U и V, так что X=U*S*V ' ;

[U.S.V] = svd(X.O) — выполняет экономичное сингулярное разложение. Пример:

» F=[23 12;3 5;6 0]

F =

23 12

3 5

6 0

» [k,l,m]=svd(F)

k =

-0.9628 0.0034 -0.2702

-0.1846 -0.7385 0.6485

-0.1974 0.6743 0.7116

l =

26.9448 0

0 4.1202

0 0

m =

-0.8863 0.4630

-0.4630 -0.8863