
Расчет внутригрупповой дисперсии по второй группе(число грузчиков -4)
Время простоя под разгрузкой (мин.т.),х |
Число
выполненных разгрузок,
|
|
|
( |
8 10 12 |
3 2 1 |
20 12 |
-1.33 0.67 2.67 |
5.31 0.90 7.13 |
Итого |
6 |
56 |
- |
13.37 |
Средняя
из внутригрупповых дисперсий:
Межгрупповая дисперсия, отражающая различия в величине признака под влиянием фактора, положенного в основу группировки, определяется по формуле:
Общая
дисперсия ()
равна сумме средней внутригрупповой
дисперсии и межгрупповой дисперсии:
=4.3+10.7=15.0,
что и соответствует полученной ранее
величине.
Задача 4. Имеются следующие данные о результатах обследования рабочих предприятия по размеру месячной заработной платы. (табл.1)
Таблица 1
Группы рабочих по возрасту, лет |
Число рабочих |
Дисперсия заработной платы |
До 20 |
100 |
300 |
20-30 |
120 |
400 |
30 и старше |
150 |
500 |
Общая дисперсия в обследованной совокупности рабочих составила 450.Определить, в какой степени вариация заработной платы рабочих предприятия зависит от возраста.
Решение
Средняя внутригрупповая дисперсия характеризует случайную вариацию под влиянием неучтенных факторов:
Межгрупповая
дисперсия отражает систематическую
вариацию под влиянием фактора, положенного
в группировки (возраста рабочих).
Межгрупповая дисперсия определяется
по правилу сложения дисперсий:
=
-
=450-413.5=36.5.
Отсюда соотношение дисперсий:
:
=36.5:450=0.08,
или 8.0%. Поэтому возраст на варьирование
заработной платы рабочих предприятия
не оказывает существенного влияния.
Статистическое изучение динамики
Задача 1. Имеются следующие данные о выпуске легковых автомобилей в России (табл. 1). Рассчитайте показатели динамики выпуска легковых автомобилей от года к году и средние за весь анализируемый период
Таблица 1
Год |
1996 |
1997 |
1998 |
1999 |
Произведено легковых автомобилей, тыс шт. |
868 |
986 |
840 |
956 |
Решение
Расчет показателей динамики от года к году представлен в табл.2
Таблица 2
Расчет показателей динамики от года к году
показатель |
Год |
||||
1996 |
1997 |
1998 |
1999 |
||
Абсолютный
прирост, |
С переменной базой |
- |
|
|
|
С постоянной базой |
- |
|
|
|
|
Коэффициент
роста (К |
С переменной базой |
- |
|
|
|
С постоянной базой |
- |
|
|
|
|
Темп
роста (Т % |
С переменной базой |
- |
|
|
|
С постоянной базой |
- |
|
|
|
|
Темп
прироста Т |
С переменной базой |
- |
|
|
|
С постоянной базой |
- |
|
|
|
|
Абсолютное значение 1% прироста А, тыс шт. |
С переменной базой |
- |
|
|
|
С постоянной базой |
- |
|
|
|
Средний уровень интервального ряда динамики:
Средний абсолютный прирост:
Средний коэффициент роста:
Средний
темп роста:
Средний
темп прироста:
Средняя
величина абсолютного значения 1% прироста:
Задача 2. Имеются следующие данные о стоимости имущества предприятия (млн руб) (табл.1). Определить абсолютное и относительное изменение среднегодовой стоимости имущества предприятия в 2000 г. по сравнению с 1998 и 1999 гг.
Таблица 1
год |
Отчетные данные |
|||
1.01 |
1.04 |
1.07 |
1.10 |
|
1998 1999 2000 2001 |
62 68 80 95 |
65 70 84 - |
70 75 88 - |
68 78 90 - |
Решение
Поскольку промежутки времени между датами равны, средний уровень моментного ряда динамики исчисляется по формуле
,где
y1
и yn-уровни
соответственно на начало и на конец
периода за который исчисляется средний
уровень; n-
число уровней ряда.
В 2000 г. среднегодовая стоимость имущества предприятия возросла по сравнению с 1998 г. на 20.375 млн., или на 3.04 %, и по сравнению с 1999 – на 13.125 млн. руб., или на 17.7 %.
Задача 3.Количество дорожно-транспортных происшествий, совершенных водителями в регионе увеличилось в 1995 г. по сравнению с 1990г. на 2 тыс., или на 4%; в 1997 г. по сравнению с 1995г. их число возросло на 30%, а в 2000 г. по сравнению с 1997 г. их число возросло на 2%. Определите количество ДТП в 1990, 1995. 1997, 2000 гг.
Решение
Уровень
ДТП в 1990 г. определяется по формуле:
,
где
абсолютная
величина 1% прироста для 1995 г.;
Далее, недостающие уровни 1995, 1997, 2000 гг. определим, зная темпы роста для соответствующего периода, тыс. ед.: