
- •Концепции современного естествознания
- •100 Экзаменационных ответов
- •Под редакцией профессора си. Самыгина
- •1. Предмет учебной дисциплины
- •Раздел I
- •2. Чем объясняется всеобщий характер законов природы?
- •3. Проблема двух культур — естественнонаучной и гуманитарной
- •5. Естественнонаучные картины мира
- •Раздел II История естествознания
- •6. Возникновение классической науки
- •7. Механистическая картина мира
- •8. Предпосылки научной революциив естествознании на рубежеXix—XX вв.
- •9. Специфика неклассического естествознания
- •10. Особенности развитияестествознания в современных
- •Раздел III Элементы современной физики
- •11. Роль концепции научной парадигмы при анализе развития естествознания
- •12. В чем преимущества концепции научно-исследовательских программ при анализе динамики развития науки?
- •13. Содержание понятия физической исследовательской программы
- •14. Какие типы физическихисследовательских программ имениместо в ходе развитияестествознания?
- •15. Основные концепциимеханистической исследовательскойпрограммы
- •1. Концепция использования математики как языка физической науки.
- •2. Концепция пространственно-временных отношений в природе.
- •5. Детерминированность поведения физического объекта (строгая, однозначная причинно-следственная связь между конкретными состояниями объекта). Обратимость всех физических процессов.
- •17. Отличия инерциальныхи неинерциальных систем отсчета. Принцип инерции
- •18. Принцип относительности Галилея
- •19. Понятие состояния физическойсистемы.
- •20. «Лапласовский» детерминизм
- •С философской точки зрения
- •Взаимоотношения категорий
- •Необходимости и случайности
- •21. Основные принципы
- •22. Сформулируйте принцип
- •Дальнедействия и принцип
- •Близкодействия. Роль концепции
- •Эфира в формировании понятия поля
- •23. Предпосылки возникновения специальной теории относительности Эйнштейна
- •24 Постулаты специальной теории относительности. Выводы из анализа преобразований Лоренца
- •1. Принцип относительности: все законы природы одинаковы во всех инерциальных системах отсчета.
- •2. Принцип постоянства скорости света: скорость света в пустоте одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.
- •25. Содержание трансдисциплинарныхконцепций релятивистской исследовательской программы
- •26. Мотивы создания общей теории относительности. Концепцияинвариантности как трансдисциплинарная идея естествознания
- •27. Теорема Нетер. Законы сохранения
- •28. Закон сохранения энергии
- •В макроскопических процессах.
- •Способы передачи энергии от одного
- •Макроскопического тепа другому
- •29. Концепция вероятностного детерминизма в статистической физике
- •30. Концепция необратимости. Понятие энтропии. Второй закон термодинамики
- •31. Проблема menловой смерти Вселенной
- •32. В чем смысл флуктуационной гипотезы, высказанной п. Больцманом?
- •33. Развитие взглядов на природу света. Форму па Планка
- •34. Фотон и его характеристики
- •35. Гипотеза де Бройля. Волновые
- •Свойства вещества. Корпускулярно-
- •Волновой дуализм природы
- •Микрообъекта
- •36. Принцип неопределенностей Гейзенберга
- •37. Принцип дополнительности Бора
- •38. Концепция неопределенности
- •39. Парадокс Эйнштейна—Подольского - Розена
- •40. Состояние квантово-механической
- •И статистическими закономерностями квантовой механики
- •41. Релятивистская квантовая физика. Античастицы и виртуальныечастицы
- •42. Физический вакуум в квантовой теории поля
- •43. Концепции, нежащие в основе
- •44. Структурные единицы материи.
- •Элементарные частицы: частицы
- •Вещества, калибровочные кванты
- •Попей и скалярные хиггс-бозоны
- •45. Единая калибровочная природа различных типов физических взаимодействий
- •46. Спонтанное нарушение симметриивакуума
- •47. Концепция вакуума в структуре
- •Современной науки. Инфляционные
- •Сценарии развития Вселенной
- •В современной космологии
- •48. Антропный принцип
- •И диалектическая концепция
- •Взаимопревращения материи
- •И сознания
- •Раздел IV Химия в системе естественных наук
- •49. Каковы место и роль химии в современной цивилизации?
- •50. Какие науки составляют фундаментальные основы современной химии?
- •51. В чем состоит особенность и двуединая задача современной химии?
- •52. Каковы концептуальные уровни современной химии?
- •53. Что есть понятия «химический элемент» и «химическое соединение» с точки зрения современности?
- •54. Что привнесло в развитие химии учение о химических процессах?
- •55. Эволюционная концепция в химии. Почему эволюционную химию можно назвать «предбиологией»?
- •56. В чем сущность химической эволюции и чем она заканчивается?
- •Раздел V Возникновение и эволюция жизни
- •57. Многогранность живого
- •58. Триединство концептуальных уровней познания в современной биологии
- •59. Структурные уровни организации живых систем
- •60. Развитие современной концепции биохимического единства всего живого
- •61. За счет чего функционирует энергетика живого?
- •62. Особенности термодинамики, самоорганизации и информационного обмена в живых системах
- •63. Роль генетического материала в воспроизводстве и эволюции живых организмов
- •64. Какие научные факты обосновывают эволюционность живого?
- •65. Исторически сформированные концепции происхождения жизни
- •66. Особенность условий на раннейЗемле
- •67. Принципы биологической эволюции
- •Раздел VI Физиология
- •68. Основные концепции современной физиологии
- •69. Кровь
- •70. Система кровообращения
- •71. Лимфатическая система
- •72. Дыхательная система
- •73. Пищеварительная система
- •74. Обмен веществ и энергии
- •75. Физиология выделения
- •76. Железы внутренней секреции
- •77. Нервная система
- •78. Вегетативная нервная система
- •79. Высшая нервная деятельность
- •Раздел VII
- •81. Роль естественного отбора
- •И социальных факторов в эволюции
- •Человека как комплексном процессе
- •Антропосоциогенеза
- •82. Как современная наука определяет природу и сущность человека?
- •83. Что свидетельствует о сложности и многомерности внутреннего мира человека?
- •84. Истоки человеческой морали и этики
- •85. Какие запреты у биовидов считаются важнейшими?
- •86. Сравнительный анализ социальных структур и социального поведения животных и человека
- •87. Чем определяются мотивации человеческого поведения?
- •88. Гуманистические позиции биоэтики
- •89. Представляет пи опасность клонирование человека?
- •90. Какие факторы приводят к потере здоровья отдельного человека и популяции?
- •91. Что дают современные мировоззренческие знания дня понимания природы здоровья?
- •92. Основа организации и устойчивости биосферы
- •93. Эволюция биосферы
8. Предпосылки научной революциив естествознании на рубежеXix—XX вв.
Наука никогда не стоит на месте, постоянно включая в зону анализа новые факты и явления. Стараясь быть достаточно строгой и основательной, наука не может пройти мимо случаев, не получивших приемлемого истолкования с позиции принятых в ней законов и стандартов. Особенно часто это проявляется при выходе научных исследований на новые объекты, тем более принципиально новые, какими стали для науки на рубеже XIX—XX вв. объекты микро- (т.е малые и бесконечно малые) и мегамира (т.е. большие и бесконечно большие объекты космического уровня). Осмысление объектов такого рода потребовало от науки изменений схем познавательной деятельности, норм и идеалов, понимания опорных категорий — иными словами, потребовало настоящей научной революции.
Толчком к новым подходам к естественной науке стали работы С. Карно (1796-1832), Р. Клаузиуса (1822-1888) и других ученых в области термодинамики, показавшие всевозрастающую роль в этой дисциплине случайностей, неопределенности, необратимости процессов. Тем самым было существенно поколеблено принципиальное положение классического естествознания о безусловном доминировании в мире гармонии над хаосом, закона над случайностью, определенности над неопределенностью. А одним из частных выводов новой термодинамики был удивительный и пугающий вывод о неизбежности тепловой смерти Вселенной. Спокойный и такой предсказуемый мир земной и небесный, каким он выглядел в канонах классического естествознания, вдруг предстал парадоксальным и непредсказуемым, нарушающим привычные и, казалось бы, «на века» установленные законы развития природы
К концу XIX в. было существенно поколеблено также и положение классического естествознания о тождестве материи и вещества. Физики в это время считали, что в мире существуют не только вещественные объекты в твердом, жидком и газообразном состоянии, но и электричество, и эфир (невесомая и непрерывная среда, передающая электрическое и магнитное взаимодействие). В то же время сохранялось убеждение, что все процессы в природе можно, так или иначе свести к механическому взаимодействию мельчайших частиц — атомов, частиц эфира и т.п. Однако уже к концу XIX в. гипотезу механического эфира пришлось отбросить, и ее место заняло представление об электромагнитном поле, колебания которого порождают столь различные явления, как видимый свет, радиоволны, рентгеновское излучение.
Предметное изучение проблем электромагнетизма в работах английских физиков М. Фарадея (1791 — 1876) и Дж. Максвелла (1831 — 1879) в конечном счете, привело авторов к изменению представлений о прерывности и непрерывности материи, подорвало основы классических понятий абсолютного пространства и абсолютного времени. Например, выдающийся ученый, физик-теоретик А. Эйнштейн (1879—1955) рассмотрел этот вопрос уже в 1905 г. в своей частной теории относительности.
Особенно много споров развернулось вокруг феномена «исчезновения материи». Обнаружение в опытах эффекта «разделения атомов» на более мелкие части, открытие электрона, превращаемости атомов и радиоактивного распада четко поставило под сомнение классическую идею о дискретном (прерывном) существовании материальных объектов в неизменном пространстве. Скажем, радиоактивный распад атомов был истолкован в те годы рядом авторов как превращение материи в энергию, т.е. по сути ее прямое «исчезновение». В этом же духе был истолкован феномен исчезновения массы электрона в зависимости от энергии поля. Ведь в классической механике Ньютона считалось, что масса и объем материальных тел неизменны и изначально заданы. Исчезновение же массы электрона в зависимости от преобразований структуры поля и скорости движения представало как нонсенс, как существенный подрыв ранее незыблемых представлений о мире.
Некоторые ученые-физики, например австриец Э. Мах (1838—1916), предполагали, что сама материя — это не некая объективная реальность, а абстрактная идеальная структура. В этих условиях многие исследователи фактически стали отходить от материалистического, традиционного для классического естествознания, понимания мира, склоняясь к идеалистическим схемам. Фактически сложилась кризисная мировоззренческая ситуация, требовавшая глубокого общенаучного и философского осмысления.
Не случайно именно в те годы (1909 г.) появилась концептуальная философская работа В.И. Ленина (1870—1924) «Материализм и эмпириокритицизм», в которой он рассмотрел глубокий кризис в физике и высказал ряд важных идей по его преодолению. В частности, он показал, что исчезла не материя, а наши устаревшие представления о ней как дискретно существующих в пространстве вещественных объектах с неизменными характеристиками.
По мнению В.И Ленина, представления о материи не следует жестко увязывать с какими-то конкретными формами ее проявления. В этом смысле электрон, известная в то время наиболее мельчайшая и неделимая частица, так же неисчерпаем, как и атом, оказавшийся сложным и делимым образованием. Понимать материю, следовательно, стоит именно диалектически, как некую объективную реальность, данную людям в ощущениях и существующую независимо от людей. Этот вывод В.И. Ленина, сформировавшийся под влиянием марксизма, стал опорным для создания новой модели естественной науки.
Существенным трансформациям подверглось и понимание таких опорных категорий-понятий, которые показывают реальное бытие материи как пространство, время, взаимодействие. Эйнштейновское понятие «пространственно-временного континуума», в котором реально существуют материальные объекты, исходило из того факта, что, во-первых, и пространство и время предстают сложными, изменчивыми величинами (искривление пространства, изменение хода времени и т.п.), а во-вторых, они выступают тесно связанными друг с другом, взаимоопределяющими. Гораздо более сложным стало представлять и материальное взаимодействие, уже не как исключительно гравитационное, но и электромагнитное. Итак, материальная основа мира представала в новой формирующейся модели науки сложной, изменчивой, парадоксальной, во многом непредсказуемой.