Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_10-13.docx
Скачиваний:
10
Добавлен:
06.08.2019
Размер:
81.92 Кб
Скачать

БИЛЕТ 10

1. Критерий планарности Понтрягина–Куратовского.

Для того чтобы сформулировать широко известный критерий Понтрягина–Куратовского, введем понятие гомеоморфизма графов. Нам понадобится операция подразбиения ребра e = ab графа. Она состоит в следующем: из графа удаляется ребро e и добавляются два новых ребра e1 = av, e2 = vb, где v — новая вершина.

Два графа называются гомеоморфными, если оба они могут быть получены из одного и того же графа подразбиением его ребер

Очевидно, что количество вершин степени 2 не влияет на планарность графа, т. е. если граф планарный, то любой граф, гомеоморфный ему, также является планарным.

Теорема 13.16. (Критерий Понтрягина – Куратовского). Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K5 или K3,3.

2. Формула включений и исключений.

Теорема 10.1. (формула включений и исключений).

(9)

 Каждый x элемент из дает единицу в . Покажем, что такой же вклад x вносит в правую часть равенства (9). Пусть, для определенности, x входит ровно в m множеств: . Тогда элемент x подсчитывается в правой части (9)

(10)

раз. Легко заметить, что из формулы бинома Ньютона для (a + b)n при a = 1 и b = –1 следует

Используем его для преобразования выражения (10):

БИЛЕТ 11

1. Эйлеровы графы. Теорема Эйлера. Алгоритм Флери.

Цикл в графе называется эйлеровым, если он содержит все ребра графа. Связный граф, в котором есть эйлеров цикл, называется эйлеровым графом. Такой граф можно нарисовать, не отрывая карандаша от бумаги и не повторяя линий.

Теорема 14.1. (Л. Эйлер, 1736 г.). Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин четны.

 Необходимость. Пусть G — эйлеров граф. Эйлеров цикл этого графа, проходя через каждую его вершину, входит в нее по одному ребру, а выходит по другому. Это означает, что каждая вершина инцидентна четному числу ребер эйлерова цикла, а поскольку такой цикл содержит все ребра графа G, то отсюда следует четность степеней всех его вершин.

Достаточность. Предположим теперь, что степени вершин графа G четны. Начнем цепь P1 из произвольной вершины v1 и будем продолжать ее, насколько возможно выбирая каждый раз новое ребро. Так как степени всех вершин четны, то, попав в очередную отличную от v вершину, мы всегда будем иметь в распоряжении еще не пройденное ребро. Поэтому цепь P1 можно продолжить путем добавления этого ребра. Таким образом, построение цепи P1 закончится в вершине v1, т. е. P1 непременно будет циклом. Если окажется, что P1 содержит все ребра графа G, то это будет требуемый эйлеров цикл. В противном случае, удалив из G все ребра цикла P1, рассмотрим граф G1, полученный в результате такой операции. Поскольку P1 и G имели вершины только четных степеней, то, очевидно, и G1 будет обладать тем же свойством. Кроме того, в силу связности графа G графы P1 и G1 должны иметь хотя бы одну общую вершину v2. Теперь, начиная с вершины v2, построим цикл P2 в графе G1 подобно тому, как строили цикл P1. Обозначим через P1‘ н P1” части цикла P1 от v1 до v2 и от v2 до v1 соответственно (см. рис. 14.2). Тогда получим новый цикл графа P3 = P1'  P2P1”, который, начиная с v1, проходит по ребрам цепи P1‘ до v2, затем обходит все ребра цикла P2 и, наконец, возвращается в v1 по ребрам цепи P1” (рис. 14.2).

Если цикл P3 не эйлеров, то проделав аналогичные построения, получим еще большой цикл и т. д. Этот процесс закончится построением эйлерова цикла. 

1. Начиная с произвольной вершины u, присваиваем произвольному ребру uv номер 1. Затем вычеркиваем ребро uv и переходим в вершину v.

2. Пусть w — вершина, в которую мы пришли в результате выполнения предыдущего шага, и k — номер, присвоенный некоторому ребру на этом шаге. Выбираем любое ребро, инцидентное вершине w, причем мост выбираем только в том случае, когда нет других возможностей; присваиваем выбранному ребру номер k + 1 и вычеркиваем его.

Этот процесс, называемый алгоритмом Флёри, заканчивается, когда все ребра графа вычеркнуты, т. е. занумерованы.

2. Число всех отображений, число сюръективных отображений конечных множеств (элементы в неразличимы).

Утверждение 7.5. А. Число сюръективных отображений f : X* Y (X* означает, что элементы X неразличимы) равно ;

Б. Число всех отображений f : X* Y равно .

 А). Так как f — сюръективное отображение, то справедливо

| f –1(y1) | + | f –1(y2) | + | f –1(y3) | + . . . + | f –1(yn) | = m ,

где | f–1(yi) | = ai > 0, i = 1, 2,…, n, или a1 + a2 + … + an = m. Поставим в соответствие набору (a1a2,…, an) двоичный вектор

(1)

Очевидно, что соответствие между векторами (1) и сюръективными отображениями f является биекцией (элементы X* неразличимы). Подсчет векторов (1) можно трактовать как подсчет расстановок n – 1 перегородок (нулей) на m – 1 место между m единицами (две перегородки не могут располагаться рядом из-за сюръективности f ). Ясно, что это можно сделать способами.

Б). Если f не являться сюръекцией, то прообразы некоторых элементов yY могут не существовать, т. е. | f (y) | –1 = 0. Это значит, что в любой промежуток разрешается ставить любое количество перегородок. Подсчитаем число таких расстановок. В (1) имеется m – n + 1 мест для 1 и перегородок. Ставим на любые n –1 из них перегородки, а оставшиеся места автоматически заполняются 1. Число способов сделать это равно . 

БИЛЕТ 12

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]