
- •5. Теплопередача……………………………………………………………………..138
- •I. Техническая термодинамика
- •1. Предмет и метод технической термодинамики
- •2. Основные определения. Термодинамическая система
- •3. Термические параметры состояния
- •3.1. Связь между термическими параметрами (уравнение состояния)
- •5. Термодинамический процесс и его энергетические
- •5.1. Аналитическое выражение для работы и теплоты процесса.
- •5.1.1. Работа изменения объема. Pv-диаграмма
- •5.2. Полезная внешняя (техническая) работа. Энтальпия
- •5.3. Вычисление количества теплоты.
- •5.4. Теплоемкость - основные понятия и определения
- •5.4.1. Теплоёмкости при постоянном объёме и давлении
- •6. Первый закон термодинамики
- •6.1. Термодинамические процессы с идеальным газом.
- •7. Компрессоры
- •7.1. Рабочий процесс поршневого компрессора
- •8. Второй закон термодинамики
- •8.1. Сущность и формулировки второго закона термодинамики
- •8.2. Обратимые и необратимые процессы
- •8.3. Круговые термодинамические процессы или циклы
- •8.4. Термический коэффициент полезного действия
- •8.5. Аналитическое выражение второго закона термодинамики.
- •8.6. Изменение энтропии в обратимых и необратимых процессах
- •9.1. Циклы поршневых двигателей внутреннего сгорания
- •9.2. Циклы газотурбинных установок
- •9.3. Циклы паротурбинных установок
- •9.3.1. Циклы Карно и Ренкина насыщенного пара.
- •9.3.2. Цикл Ренкина на перегретом паре
- •9.3.3. Общая характеристика холодильных установок
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.3. Основные процессы с водяным паром
- •10.4. Определение параметров воды и водяного пара
- •11. Влажный воздух
- •II.Теплопередача.
- •1. Виды теплообмена.
- •2. Теплопроводность
- •2.1. Основной закон теплопроводности
- •2.2. Теплопроводность плоской стенки
- •2.3. Теплопроводность цилиндрической стенки
- •2.4. Теплопроводность шаровой стенки
- •3. Конвективный теплообмен
- •3.1. Уравнение теплоотдачи
- •3.2. Основы теории подобия
- •3.3. Теплообмен при ламинарном течении жидкости в трубах
- •3.4. Теплообмен при турбулентном движении жидкости в трубах
- •3.5. Теплоотдача при внешнем обтекании пучков труб
- •3.6. Теплоотдача при свободном движении теплоносителя
- •4. Лучистый теплообмен
- •4.1. Основные определения
- •4.2. Теплообмен излучением системы тел в прозрачной среде
- •4.3. Перенос лучистой энергии в поглощающей и излучающей среде
- •5. Теплопередача
- •5.1. Плоская стенка
- •5.2. Цилиндрическая стенка
- •5.3. Интенсификация теплопередачи
- •5.4. Тепловая изоляция
- •6. Основы теплового расчета теплообменных аппаратов
- •6.1. Типы теплообменных аппаратов
- •6.2. Рекуперативные аппараты
- •6.3. Теплообменные регенеративные и смесительные аппараты
- •III. Основы теории массообмена
- •1. Основные определения и понятия
- •2. Основы массопередачи в системах со свободной
- •2.1. Молекулярная диффузия
- •2.2. Конвекция и массоотдача
- •3. Абсорбция
- •4. Перегонка жидкостей
- •4.1. Простая перегонка
- •5. Жидкая экстракция
- •5.1. Экстрактивная и азеотропная ректификация
- •6. Адсорбция и ионный обмен
- •6.1. Основные промышленные адсорбенты и их свойства
- •6.2. Устройство и принцип действия адсорберов
- •6.3. Десорбция
- •7. Ионный обмен
- •8. Сушка
- •8.1. Основные характеристики сушки
- •8.2. Кинетика процесса сушки
- •9. Кристаллизация
6.1. Основные промышленные адсорбенты и их свойства
Основными промышленными адсорбентами являются пористые тела, обладающие большим объемом микропор. Свойства адсорбентов определяются природой материала, из которого они изготовлены, и пористой внутренней структурой.
В промышленных адсорбентах основное количество поглощенного вещества сорбируется на стенках микропор. Роль переходных пор и макропор в основном сводится к транспортированию адсорбируемого вещества к микропорам.
Адсорбенты характеризуются своей поглотительной, или адсорбционной способностью, определяемой максимально возможной концентрацией адсорбтива в единице массы или объема адсорбента. Величина поглотительной способности зависит от типа адсорбента, его пористой структуры, природы поглощаемого вещества, его концентрации, температуры, а для газов и паров — от их парциального давления. Максимально возможную при данных условиях поглотительную способность адсорбента условно называют равновесной активностью.
По химическому составу все адсорбенты можно разделить на углеродные и неуглеродные. К углеродным адсорбентам относятся активные (активированные) угли, углеродные волокнистые материалы, а также некоторые виды твердого топлива. Неуглеродные адсорбенты включают в себя силикагели, активный оксид алюминия, алюмогели, цеолиты и глинистые породы.
Активные угли, состоящие из множества беспорядочно расположенных микрокристаллов графита, обычно используют для поглощения органических веществ в процессах очистки и разделения жидкостей и газов (паров). Эти адсорбенты получают сухой перегонкой ряда углеродосодержащих веществ (древесины, каменного угля, костей животных, косточек плодов и др.) с целью удаления летучих. После этого уголь активируют, например прокаливают его при температуре 850-900° С, что приводит к освобождению пор от смолистых веществ и образованию новых микропор. Активацию проводят также экстрагированием смол из пор органическими растворителями, окислением кислородом воздуха и др. Более однородная структура углей получается при их активации химическими методами: путем обработки горячими растворами солей (например, сульфитами, нитратами и др.) или минеральными кислотами (серной, азотной и др.).
Удельная поверхность активных углей очень высока, а их насыпная плотность 200-900 кг/м3. Активные угли применяют в виде частиц неправильной формы размером 1-7 мм, цилиндров диаметром 2-3 мм и высотой 4—6 мм и порошка с размером частиц менее 0,15 мм. Последний вид активных углей применяют для разделения растворов. К основным недостаткам активных углей относятся их горючесть и невысокая механическая прочность.
Силикагель обезвоженный гель кремниевой кислоты (Si02 * Н20)—используют для адсорбции полярных соединений. Его применяют в процессах осушки газов и жидкостей, при разделении органических веществ в газовой фазе и в хроматографии. Силикагель получают обработкой раствора силиката натрия (растворимое стекло) серной кислотой (иногда хлороводородной) или растворами солей, имеющих кислую реакцию. Образовавшийся гель промывают водой и сушат до конечной влажности 5—7%, так как при такой влажности силикагель обладает наибольшей адсорбционной способностью. Насыпная плотность силикагеля – 400-800 кг/м3. Размер частиц неправильной формы изменяется в довольно широком интервале—от 0,2 до 7 мм, а гранулированных (сферической или овальной формы) - от 2 до 7 мм.
К достоинствам силикагелей относятся их негорючесть и большая механическая прочность, чем у активных углей. Недостатком силикагелей по сравнению с активными углями является, помимо их более низкой удельной поверхности, резкое снижение поглотительной способности по отношению к парам органических веществ в присутствии влаги.
По сорбционным свойствам к силикагелю близко примыкают алюмогели, получаемые термической обработкой гидроксида алюминия [Аl(ОН)3] при температурах 600-1000 °С. Поры полученного сорбента (92% АК03) имеют диаметр 1-3 нм, насыпная плотность такого сорбента 1600 кг/м3. Алюмогели используют для осушки газов, очистки водных растворов и минеральных масел, применяют в качестве катализаторов и их носителей.
Цеолиты представляют собой синтетические минералы, которые являются водными алюмосиликатами, содержащими оксиды щелочных и щелочноземельных металлов. Эти адсорбенты отличаются регулярной структурой пор, размеры которых соизмеримы с размерами поглощаемых молекул. Особенность цеолитов состоит в том, что адсорбционные поверхности соединены между собой окнами определенного диаметра, через которые могут проникать только молекулы меньшего размера. На этом основано разделение смесей с разными по размеру молекулами, что послужило причиной называть цеолиты молекулярными.
Для разделения газовых смесей применяют цеолиты в виде шариков или гранул размером от 1 до 5 мм, а для разделения жидких смесей - в виде мелкозернистого порошка.
Особенно широко цеолиты используют для глубокой осушки газов и жидкостей, в процессах очистки и разделения смесей веществ с близкой молекулярной массой, а также в качестве катализаторов и их носителей.
Для очистки жидкостей от различных примесей в качестве адсорбентов применяют природные глинистые породы. Эти глины для их активации обрабатывают серной или хлороводородной кислотами
Отметим, что адсорбенты характеризуются еще статической и динамической активностью. Под статической активностью понимают количество вещества, поглощенного единицей массы или объема адсорбента от начала адсорбции до установления равновесия. Этот вид активности определяют в статических условиях, т.е. без движения смеси газов или раствора. При движении смеси сквозь слой адсорбента через определенный промежуток времени адсорбент перестает полностью поглощать извлекаемый компонент, и происходит «проскок» этого компонента с последующим увеличением концентрации компонента в уходящей из слоя смеси вплоть до наступления равновесия. Количество вещества, поглощенного единицей массы или объема адсорбента до начала проскока, называют динамической активностью адсорбента. Динамическая активность всегда меньше статической, поэтому количество адсорбента определяют по его динамической активности.