
- •5. Теплопередача……………………………………………………………………..138
- •I. Техническая термодинамика
- •1. Предмет и метод технической термодинамики
- •2. Основные определения. Термодинамическая система
- •3. Термические параметры состояния
- •3.1. Связь между термическими параметрами (уравнение состояния)
- •5. Термодинамический процесс и его энергетические
- •5.1. Аналитическое выражение для работы и теплоты процесса.
- •5.1.1. Работа изменения объема. Pv-диаграмма
- •5.2. Полезная внешняя (техническая) работа. Энтальпия
- •5.3. Вычисление количества теплоты.
- •5.4. Теплоемкость - основные понятия и определения
- •5.4.1. Теплоёмкости при постоянном объёме и давлении
- •6. Первый закон термодинамики
- •6.1. Термодинамические процессы с идеальным газом.
- •7. Компрессоры
- •7.1. Рабочий процесс поршневого компрессора
- •8. Второй закон термодинамики
- •8.1. Сущность и формулировки второго закона термодинамики
- •8.2. Обратимые и необратимые процессы
- •8.3. Круговые термодинамические процессы или циклы
- •8.4. Термический коэффициент полезного действия
- •8.5. Аналитическое выражение второго закона термодинамики.
- •8.6. Изменение энтропии в обратимых и необратимых процессах
- •9.1. Циклы поршневых двигателей внутреннего сгорания
- •9.2. Циклы газотурбинных установок
- •9.3. Циклы паротурбинных установок
- •9.3.1. Циклы Карно и Ренкина насыщенного пара.
- •9.3.2. Цикл Ренкина на перегретом паре
- •9.3.3. Общая характеристика холодильных установок
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.3. Основные процессы с водяным паром
- •10.4. Определение параметров воды и водяного пара
- •11. Влажный воздух
- •II.Теплопередача.
- •1. Виды теплообмена.
- •2. Теплопроводность
- •2.1. Основной закон теплопроводности
- •2.2. Теплопроводность плоской стенки
- •2.3. Теплопроводность цилиндрической стенки
- •2.4. Теплопроводность шаровой стенки
- •3. Конвективный теплообмен
- •3.1. Уравнение теплоотдачи
- •3.2. Основы теории подобия
- •3.3. Теплообмен при ламинарном течении жидкости в трубах
- •3.4. Теплообмен при турбулентном движении жидкости в трубах
- •3.5. Теплоотдача при внешнем обтекании пучков труб
- •3.6. Теплоотдача при свободном движении теплоносителя
- •4. Лучистый теплообмен
- •4.1. Основные определения
- •4.2. Теплообмен излучением системы тел в прозрачной среде
- •4.3. Перенос лучистой энергии в поглощающей и излучающей среде
- •5. Теплопередача
- •5.1. Плоская стенка
- •5.2. Цилиндрическая стенка
- •5.3. Интенсификация теплопередачи
- •5.4. Тепловая изоляция
- •6. Основы теплового расчета теплообменных аппаратов
- •6.1. Типы теплообменных аппаратов
- •6.2. Рекуперативные аппараты
- •6.3. Теплообменные регенеративные и смесительные аппараты
- •III. Основы теории массообмена
- •1. Основные определения и понятия
- •2. Основы массопередачи в системах со свободной
- •2.1. Молекулярная диффузия
- •2.2. Конвекция и массоотдача
- •3. Абсорбция
- •4. Перегонка жидкостей
- •4.1. Простая перегонка
- •5. Жидкая экстракция
- •5.1. Экстрактивная и азеотропная ректификация
- •6. Адсорбция и ионный обмен
- •6.1. Основные промышленные адсорбенты и их свойства
- •6.2. Устройство и принцип действия адсорберов
- •6.3. Десорбция
- •7. Ионный обмен
- •8. Сушка
- •8.1. Основные характеристики сушки
- •8.2. Кинетика процесса сушки
- •9. Кристаллизация
6. Адсорбция и ионный обмен
Адсорбцией называют процесс поглощения вещества из смеси газов, паров или растворов поверхностью или объемом пор твердого тела-адсорбента. Поглощаемое вещество, находящееся в объемной фазе (газе, паре или жидкости), называется адсорвтивом, а поглощенное - одсорбитом.
Адсорбцию подразделяют на два вида: физическую и химическую. Физическая адсорбция в основном обусловлена поверхностными вандерваальсовыми силами, которые проявляются на расстояниях, значительно превышающих размеры адсорбируемых молекул, поэтому на поверхности адсорбента обычно удерживаются несколько слоев молекул адсорбата. При химической адсорбции поглощаемое вещество вступает в химическое взаимодействие с адсорбентом с образованием на его поверхности обычных химических соединений.
Силы притяжения возникают на поверхности адсорбента благодаря тому, что силовое поле поверхностных атомов и молекул не уравновешено силами взаимодействия соседних частиц. По физической природе силы взаимодействия молекул поглощаемого вещества и адсорбента относятся в основном к дисперсионным, возникающим благодаря перемещению электронов а сближающихся молекулах. В ряде случаев адсорбции большое значение имеют электростатические и индукционные силы, а также водородные связи.
Заполнение адсорбатом поверхности адсорбента частично уравновешивает поверхностные силы и вследствие этого снижает поверхностное натяжение (свободную удельную поверхностную энергию). Поэтому адсорбция является самопроизвольным процессом, течение которого сопровождается уменьшением свободной энергии и энтропии системы.
Убыль свободной энергии и энтропии системы вызывает уменьшение ее энтальпии (АН = AG + TAS, АН < 0), что равнозначно выделению тепла, т.е. процессы адсорбции экзотермичны.
Процессы адсорбции избирательны и обратимы. Процесс, обратный адсорбции, называют десорбцией, которую используют для выделения поглощенных веществ и регенерации адсорбента.
Наиболее рационально адсорбцию применять для обработки смесей с низкой концентрацией извлекаемых веществ. В этом случае увеличивается продолжительность работы адсорбционного аппарата - адсорбера - на стадии собственно адсорбции до его переключения на десорбцию.
Типичными примерами адсорбции являются осушка газов и жидкостей, разделение смесей углеводородов, рекуперация растворителей, очистка вентиляционных выбросов и сточных вод и т. п. За последнее время значение адсорбции существенно возросло, особенно в связи с решением экологических проблем и проблем получения особо чистых веществ.
Частным случаем хемосорбции является ионный обмен между твердым ионообменным сорбентом (попитом) и раствором электролита.
В промышленности используют как природные ионообменные сорбенты (цеолиты, бентонитовые глины, фосфаты титана, циркония и др.), так и синтетические, среди которых преобладают ионообменные полимеры. Синтетические сорбенты - иониты - представляют собой полимерную матрицу с трехмерной структурой макромолекул, имеющую ионогенные группы. В растворе иониты образуют неподвижные макромолекулярные ионы и подвижные ионы противоположного знака. В настоящее время преобладающее значение в технике приобрели иониты на основе синтетических смол.
В соответствии с типом подвижного иона иониты делятся на катиониты-поликислоты, способные обмениваться с раствором катионами, и аниониты - полиоснования, обменивающиеся с раствором анионами.
Ионный обмен широко применяют в ряде производств неорганических и органических веществ, в катализе, при получении лекарственных препаратов, в медицине, энергетике (глубокая очистка воды перед подачей ее в котлы), в электронике, при очистке сточных вод, в радиохимии. Один из серьезных недостатков ионного обмена — необходимость довольно частой регенерации ионитов с последующей их промывкой, что связано с дополнительным расходом реагентов (обычно кислот и щелочей) и образованием значительного объема сточных вод.