
- •5. Теплопередача……………………………………………………………………..138
- •I. Техническая термодинамика
- •1. Предмет и метод технической термодинамики
- •2. Основные определения. Термодинамическая система
- •3. Термические параметры состояния
- •3.1. Связь между термическими параметрами (уравнение состояния)
- •5. Термодинамический процесс и его энергетические
- •5.1. Аналитическое выражение для работы и теплоты процесса.
- •5.1.1. Работа изменения объема. Pv-диаграмма
- •5.2. Полезная внешняя (техническая) работа. Энтальпия
- •5.3. Вычисление количества теплоты.
- •5.4. Теплоемкость - основные понятия и определения
- •5.4.1. Теплоёмкости при постоянном объёме и давлении
- •6. Первый закон термодинамики
- •6.1. Термодинамические процессы с идеальным газом.
- •7. Компрессоры
- •7.1. Рабочий процесс поршневого компрессора
- •8. Второй закон термодинамики
- •8.1. Сущность и формулировки второго закона термодинамики
- •8.2. Обратимые и необратимые процессы
- •8.3. Круговые термодинамические процессы или циклы
- •8.4. Термический коэффициент полезного действия
- •8.5. Аналитическое выражение второго закона термодинамики.
- •8.6. Изменение энтропии в обратимых и необратимых процессах
- •9.1. Циклы поршневых двигателей внутреннего сгорания
- •9.2. Циклы газотурбинных установок
- •9.3. Циклы паротурбинных установок
- •9.3.1. Циклы Карно и Ренкина насыщенного пара.
- •9.3.2. Цикл Ренкина на перегретом паре
- •9.3.3. Общая характеристика холодильных установок
- •10. Водяной пар
- •10.1. Основные понятия и определения
- •10.3. Основные процессы с водяным паром
- •10.4. Определение параметров воды и водяного пара
- •11. Влажный воздух
- •II.Теплопередача.
- •1. Виды теплообмена.
- •2. Теплопроводность
- •2.1. Основной закон теплопроводности
- •2.2. Теплопроводность плоской стенки
- •2.3. Теплопроводность цилиндрической стенки
- •2.4. Теплопроводность шаровой стенки
- •3. Конвективный теплообмен
- •3.1. Уравнение теплоотдачи
- •3.2. Основы теории подобия
- •3.3. Теплообмен при ламинарном течении жидкости в трубах
- •3.4. Теплообмен при турбулентном движении жидкости в трубах
- •3.5. Теплоотдача при внешнем обтекании пучков труб
- •3.6. Теплоотдача при свободном движении теплоносителя
- •4. Лучистый теплообмен
- •4.1. Основные определения
- •4.2. Теплообмен излучением системы тел в прозрачной среде
- •4.3. Перенос лучистой энергии в поглощающей и излучающей среде
- •5. Теплопередача
- •5.1. Плоская стенка
- •5.2. Цилиндрическая стенка
- •5.3. Интенсификация теплопередачи
- •5.4. Тепловая изоляция
- •6. Основы теплового расчета теплообменных аппаратов
- •6.1. Типы теплообменных аппаратов
- •6.2. Рекуперативные аппараты
- •6.3. Теплообменные регенеративные и смесительные аппараты
- •III. Основы теории массообмена
- •1. Основные определения и понятия
- •2. Основы массопередачи в системах со свободной
- •2.1. Молекулярная диффузия
- •2.2. Конвекция и массоотдача
- •3. Абсорбция
- •4. Перегонка жидкостей
- •4.1. Простая перегонка
- •5. Жидкая экстракция
- •5.1. Экстрактивная и азеотропная ректификация
- •6. Адсорбция и ионный обмен
- •6.1. Основные промышленные адсорбенты и их свойства
- •6.2. Устройство и принцип действия адсорберов
- •6.3. Десорбция
- •7. Ионный обмен
- •8. Сушка
- •8.1. Основные характеристики сушки
- •8.2. Кинетика процесса сушки
- •9. Кристаллизация
2. Теплопроводность
2.1. Основной закон теплопроводности
Если в твердом теле, неподвижной жидкости или газе температура в различных точках неодинакова, то, как показывает опыт, теплота самопроизвольно переносится от участков тела с более высокой температурой к участкам с более низкой температурой. Такой процесс называется теплопроводностью. Внутренний механизм явления теплопроводности объясняется на основе молекулярно-кинетических представлений; перенос энергии при этом осуществляется вследствие теплового движения и энергетического взаимодействия между микрочастицами (молекулами, атомами, электронами), из которых состоит тело.
Процесс теплопроводности неразрывно связан с распределением температуры внутри тела. Поэтому при его изучении прежде всего необходимо установить понятия температурного поля и градиента температуры.
1. Температурное поле. Температура, как известно, характеризует тепловое состояние тела и определяет степень его нагретости. Так как тепловое состояние отдельных частей тела в процессе теплопроводности различно, то в общем случае температура t является функцией координат х, у, z и времени τ, т.е.
(2.1)
Совокупность значений температуры для всех точек пространства в данный момент времени называется температурным полем. Уравнение (2.1) является математическим выражением такого поля. При этом, если температура меняется во времени, поле называется неустановившимся (нестационарным), а если не меняется – установившимся (стационарным). Температура может быть функцией одной, двух и трех координат. Соответственно этому и температурное поле называется одно-, двух- и трехмерным.
2. Градиент температур. При любом температурном поле в теле всегда имеются точки с одинаковой температурой. Геометрическое место таких точек образует изотермическую поверхность. Так как в одной и той же точке пространства одновременно не может быть двух различных температур, то изотермические поверхности не пересекаются; все они или замыкаются на себя, или кончаются на границах тела. Следовательно, изменение температуры в теле наблюдается лишь в направлениях, пересекающих изотермические поверхности (например, направление х, рис. 2.1.). При этом наиболее резкое изменение температуры получается в направлении нормали n к изотермической поверхности. Предел отношения изменения температуры ∆t к расстоянию между изотермами по нормали ∆n называется градиентом температур и обозначается одним из следующих символов:
(2.2)
Рис. 2.1. К определению температурного градиента.
Температурный градиент является вектором, направленным по нормали к изотермической поверхности в сторону возрастания температуры, К/м.
3. Тепловой поток. Теплота самопроизвольно переносится только в сторону убывания температуры. Количество теплоты, переносимое через какую-либо изотермическую поверхность в единицу времени, называется тепловым потоком Q. Тепловой поток, отнесенный к единице площади изотермической поверхности, называется плотностью теплового потока q. Плотность теплового потока есть вектор, направленные которого совпадает с направлением распространения теплоты в данной точке и противоположно направлению вектора температурного градиента.
4. Закон Фурье. Изучая процесс теплопроводности в твердых телах, Фурье экспериментально установил, что количество переданной теплоты пропорционально падению температуры, времени и площади сечения, перпендикулярного направлению распространения теплоты. Если количество переданной теплоты отнести к единице площади сечения и единице времени, то установленную зависимость можно записать:
(2.3.)
Уравнение 2.3. является математическим выражением основного закона теплопроводности – закона Фурье.
5. Коэффициент теплопроводности. Коэффициент пропорциональности в уравнении 2.3 называется коэффициентом теплопроводности. Он является физическим свойством вещества и характеризует его способность проводить теплоту:
(2.4)
Значение коэффициента теплопроводности представляет собой количество теплоты, которое проходит в единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.
Для различных веществ коэффициент теплопроводности различен и в общем случае зависит от структуры, плотности, влажности, давления и температуры. Все вместе взятое затрудняет выбор правильного значения коэффициента теплопроводности. Поэтому при ответственных расчетах значение коэффициента теплопроводности следует определять путем специального изучения применяемого материала. В технических расчетах значения коэффициента теплопроводности обычно берутся по справочным таблицам. При этом Наде следить лишь за тем, чтобы физические характеристики материала (структура, плотность, влажность, давление и температура) были соответственны.