Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОД Л.4.9.11.doc
Скачиваний:
14
Добавлен:
04.08.2019
Размер:
85.5 Кб
Скачать

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ.

Ульяновское высшее авиационное училище гражданской авиации (институт)

ФАКУЛЬТЕТ «ПОДГОТОВКИ АВИАЦИОННЫХ СПЕЦИАЛИСТОВ»

КАФЕДРА «ОБЕСПЕЧЕНИЕ АВИАЦИОННОЙ БЕЗОПАСНОСТИ»

«УТВЕРЖДАЮ»

Заведующий кафедрой ОАБ

профессор В.М.Ильин

« » 2011г.

Доцент Вербицкий Ю.А.

ЛЕКЦИЯ

по учебной дисциплине

«Организация досмотра»

Тема 4. Технические средства проведения досмотра.

Лекция 4.9. Основы рентгеновской интроскопии.

Обсуждено на заседании кафедры ОАБ

Протокол № от « « 2011г.

Ульяновск 2011

Введение

Учебные вопросы:

1. Основы, цели и задачи интроскопии.

2 Требования к рентгеновским установкам досмотра и их классификация.

Заключение

Литература.

1.Чадович И.И. Электронные средства досмотра: Учеб. Пособие/ СПбГУАП. СПб;

2. http://st.ess.ru/publications/articles/kovalev1/kovalev.htm

3. http://st.ess.ru/publications/articles/kovalev2/kovalev2.pdf

4. http://st.ess.ru/publications/articles/kovalev3/kovalev3.pdf

Учебно-материальное обеспечение.

1. Наглядные пособия.

2. Технические средства обучения.

4. Приложения.

Введение

Одной из актуальнейших проблем развития общества была и остается его безопасность: это борьба с преступностью, терроризмом и экономическими правонарушениями, предупреждение и предотвращение техногенных и экологических катастроф. Эффективность решения этих проблем неразрывно связана с уровнем оснащенности соответствующих структур техническими средствами, важное место среди которых принадлежит информативным устройствам, основанным на методах интроскопии и неразрушающего контроля (НК).

1.Основы, цели и задачи интроскопии.

Контроль багажа и почтовых отправлений, контейнеров и транспортных средств, продуктов питания и т.д. — все это осуществляется в настоящее время с помощью технических средств интроскопии, включая различные по назначению и конструкции рентгеновские установки. Рентгеновские установки досмотра (далее – РУД) обеспечивают решение задач поиска и выявления взрывчатых веществ и взрывных устройств, оружия и боеприпасов, пресечения попыток нелегального провоза запрещенных предметов, контрабанды и наркотиков.

Интроскопия (от латинского intro — внутри) — это визуальное наблюдение предметов или процессов внутри оптически непрозрачных тел, в непрозрачных средах (веществах). Наблюдение осуществляется путём преобразования невидимого глазом теневого изображения исследуемого объекта на экране специального устройства, называемого интроскопом.

Рождение и развитие интроскопии как науки, определяется, прежде всего, главным её свойством — аппаратурным расширением возможностей человеческого зрения. Следует отметить, что человеческий глаз воспринимает весьма узкий диапазон электромагнитного излучения, границы которого определяются длиной волны от 400 до 800 нм, а его разрешающая способность не превышает десятых долей градуса углового размера наблюдаемых предметов (объектов), при достаточном уровне контраста.

Создание устройств, расширяющих возможности человеческого зрения и позволивших увидеть то, что было скрыто в силу удаленности или малости, относится к XV веку. Однако эти устройства лишь улучшали характеристики зрения без расширения диапазона видимого спектра электромагнитного излучения.

Первым таким устройством явился микроскоп. По некоторым данным первый двухлинзовый микроскоп построил З. Янсен (Нидерланды) в 1590 году. Применение микроскопа, далеко несовершенного, позволило англичанину Г. Гуку (1665г.) открыть клеточное строение животной и растительной ткани, голландскому пастору А. Левенгуку (1673-1677г.г.) — открыть микроорганизмы, а немецкому физику Э. Аббе (1872-1873г.г.) — разработать и развить основы теории методов микроскопических исследований. Другим важным этапом на этом пути явилось создание телескопа, построенного Галилеем в 1609 году, усовершенствованным и улучшенным Гюйгенсом и Рамсденом, с помощью которого был совершен ряд замечательных астрономических открытий.

Рубеж конца XIX начала XX веков ознаменовался рядом великих открытий, бурным развитием физики, потоком новых фактов и идей, опережавших самые смелые предпосылки и ожидания. Научная деятельность в этот период целой плеяды знаменитых ученых заложила основы методов той науки, которая впоследствии получит название интроскопии.

Г. Герц в 1886-1889 годах впервые доказал на опыте существование электромагнитных волн, установив их тождественность со световыми. Английский физик Дж. Дж. Томпсон в 1897 году открыл электрон, а в 1895 году сделал своё знаменательное открытие В. К. Рентген. В 1896 году А. Беккерель открыл радиоактивность. Вскоре мир узнал об альфа- и бета- лучах, а в 1901году П. Виллард открыл гамма-излучение. Через три десятилетия супруги Ф. и И. Жолео-Кюри открывают позитрон (1934 год), а двумя годами ранее Дж. Чедвик — нейтрон.

Открытие новых видов электромагнитного излучения и выявление закономерности его взаимодействия с различными материалами стимулировало создание устройств, преобразующих различные виды излучения (от гамма квантов высоких энергий до радиоволн и от упругих колебаний до корпускулярных излучений) в оптически видимое, тем самым, обеспечив рождение науки о видении в оптически непрозрачных средах.

Разнообразие практических задач, решаемых на основе методов и средств интроскопии, как по своей цели и содержанию, так и по своим условиям, предполагает решать конкретную проблему с помощью различных физических методов. Современные методы интроскопии основаны на использовании практически всего частотного диапазона электромагнитного спектра, а современные интроскопы позволяют осуществлять прямое оптическое видение в прошедших и рассеянных лучах с заданным коэффициентом трансформации размеров изображения внутренней структуры практически любого объекта. Все зависит от выбора первичного излучения, его интенсивности и спектрального состава.

В таблице 1 дана современная классификация известных видов электромагнитного излучения.

Таблица 1. Классификация различных видов излучения.

Вид излучения

Частотный диапазон,

Длина волны,

Энергия излучения

 

Гц

м

(фотонов, эВ)

Низкочастотное

103

 

 

Обычное радиоволновое

3· 109-103

 

 

Микроволновое (СВЧ)

3· 1011 - 3· 109

10-1 – 10-3

 

Инфракрасное

3· 1011 - 4· 1014

(10-7,5)· 10-7

10-3 – 1,5

Видимое

4· 1014 – 7,5· 1014

7,5· 10-7-4· 10-7

1,5 - 3

Ультрафиолетовое

7,5· 1014 - 3· 1016

4· 10-7 – 10-8

3 - 102

Рентгеновское

3· 1016 - 3· 1019

10-8 – 10-11

102 - 105

Гамма

3· 1019 - 3· 1021

10-11 – 10-13

105 - 107

Космическое

> 3· 1021

< 10-13

> 107

Наряду с перечисленными видами электромагнитного излучения в интроскопии широко используются методы на основе акустических волн, ведутся работы по исследованию возможности использования корпускулярных излучений (нейтроны, электроны, протоны, позитроны), а также электростатического поля.

Перечисленные виды излучений лежат в основе различных методов интроскопии

Одним из наиболее универсальных и информативных методов интроскопии является рентгеновский, занимающий ведущее место в процедуре досмотра, а технические средства, основанные на данном методе, отличаются широким многообразием типов.

Современная технология, контроль качества продукции, анализ функционирования узлов и механизмов, контроль багажа, почтовых отправлений, грузовых контейнеров и транспортных средств, продуктов питания и сырья, судебно-медицинская экспертиза и анализ произведений живописи, регистрация быстропротекающих процессов и физических явлений в оптически непрозрачных средах — вот далеко неполный перечень сфер применения средств рентгеновской интроскопии.

История развития метода рентгеновской интроскопии берёт своё начало с 8 ноября 1895 г., В. Рентген в своей маленькой лаборатории впервые зафиксировал действие излучения круксовой трубки на кристаллы платиносинеродистого бария. Всякий раз, когда через трубку проходил ток, она испускала невидимое глазом излучение, способное проходить сквозь непрозрачную для света преграду и вызывать свечение кристаллов двойной соли цианистого бария и платины. Трубки с катодными лучами использовались в опытах уже около 40 лет, но никто из экспериментаторов не обратил внимания на излучение, зафиксированное Рентгеном.

В течение 50 суток Рентген исследовал свойства лучей и искал объяснение открытому явлению, превратившись в затворника, работая день и ночь и практически не выходя из лаборатории. Такое поведение ученого вызвало бурные протесты жены — фрау Марты. Следует объяснение, в процессе которого Рентген делает фантастический снимок: на нём видны тёмные силуэты костей кисти жены, а на одной из фаланг — чёрное пятно обручального кольца. Эта фотография, представленная на фото 1, стала исторической — первой рентгенограммой человеческого органа. 28 декабря 1895 года.

Фото 1. Одна из первых рентгенограмм: изображение “руки без мяса”

Появилась масса публикаций по исследованию и применению икс-лучей. В России А. С. Попов одним из первых создал аппаратуру для получения и исследования икс-лучей, а профессор Петербургской военно-медицинской академии И. Т. Егоров уже во второй половине 1896 года делал пациентам рентгенодиагностические снимки.

Помимо медицинских целей уже в 1896 году рентгеновские икс-лучи используются при создании специальной аппаратуры, предназначенной для контроля багажа и почтовых отправлений.

Начало интенсивного развития рентгеновской техники, значительный импульс в расширении и углублении работ по разработке методов и созданию специальных поисковых средств радиационной интроскопии как в России, так и за рубежом, происшедшие во второй половине 60-х годов, были обусловлены в немалой степени нарастанием в этот период количества террористических актов, связанных с вооруженным захватом и угоном самолетов, подготовкой и проведением серии взрывов в ряде европейских стран, резким увеличением контрабандной торговли оружием и наркотиками, а также усилением международной напряженности.

 

До оборудования аэропортов РУД

После оборудования аэропортов РУД

Годы

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

Количество угонов самолётов

3

3

7

1

8

 

 

 

1

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]