- •1.Основные понятия и этапы са
- •2. Операция и ее составляющие. Этапы исо
- •Этапы операционного проекта
- •Виды математических моделей ио, примеры.
- •4. Состязательные задачи. Решение игры 2-х лиц
- •7. Примеры задач лп: игра 2-х лиц как задача лп, транспортная задача
- •В общем случае модель задачи лп имеет вид
- •Сбалансированная транспортная задача
- •8 Формы представления задач лп и способы приведения к ним
- •1. Каноническая форма задач лп
- •2. Стандартная форма задачи лп
- •9. Основные понятия лп. Свойства задач лп
- •10. Геометрия задач лп, базисные решения, вырожденность.
- •4.7. Выделение вершин допустимого множества
- •11. Понятие базиса. Переход от одного базисного решения к другому
- •12. Признак оптимальности. Определение начального базисного решения.
- •13. Алгоритм симплекс-метода
- •14. Двойственность задач лп
- •4.11.1. Запись двойственной задачи в симметричном случае
- •4.11.3. Запись двойственной задачи в общем случае
- •15.Экономическая интерпретация двойственной задачи
- •16. Теоремы двойственности
- •17. Двойственный и модифицированный симплекс-метод Модифицированный алгоритм
- •18. Параметрический анализ. Параметрирование вектора ограничениий
- •Параметрирование вектора ограничениий
- •19. Параметрирование коэффициентов линейной формы
- •20. Модели транспортных задач и их характеристика, условия разрешимости.
- •Простейшая транспортная задача (т-задача)
- •Транспортная задача с ограниченными пропускными способностями (Td - задача)
- •Транспортные задачи по критерию времени
- •21. Построение начального плана перевозок т-задачи
- •5.2.1. Построение начального плана перевозок
- •Правило северо-западного угла
- •Правило минимального элемента.
- •22.Обоснование метода потенциалов
- •5.2.3. Признак оптимальности
- •23. Алгоритм метода потенциалов.
- •24. Двойственная пара транспортных задач
- •25. Метод потенциалов для Td-задачи
- •5.5. Решение задачи по критерию времени
- •26. Приведение открытой транспортной задачи к закрытой
- •27. Транспортные задачи в сетевой постановке (транспортные сети)
- •28. Задача о максимальном потоке
- •29. Метод декомпозиции Данцига - Вулфа
- •30. Решение транспортной задачи методом Данцига-Вулфа (метод декомпозиции тз)
- •32. Целочисленное программирование
- •7.1. Проблема целочисленности
- •33. Метод отсечений
- •Пример 7.1. Выведем условие отсечения для задачи
- •34. Метод ветвей и границ
- •35. Аддитивный алгоритм
- •36. Нелинейное программирование
- •Теорема
- •37. Квадратичное программирование
- •38. Сепарабельное программирование (сп) и дробно-линейное программирование
- •8.5. Задачи дробно-линейного программирования
- •39. Метод покоординатного спуска и Хука-Дживса Метод первого порядка
- •8.8. Многомерный поиск безусловного минимума
- •8.8.1. Метод Гаусса-Зейделя (покоординатного спуска)
- •Метод Хука-Дживса (метод конфигураций) Метод первого порядка
- •Метод Хука-Дживса (метод конфигураций)
- •40. Симплексный метод поиска
- •41. Градиентные методы
- •Методы сопряженных направлений
- •43. Методы случайного поиска
- •Алгоритм с возвратом при неудачном шаге
- •Алгоритм с обратным шагом
- •Алгоритм наилучшей пробы
- •Алгоритм статистического градиента
- •44. Метод проектирования градиента
- •Метод проектирования градиента
- •45. Генетические алгоритмы
- •46. Метод штрафных функций и барьерных функций
- •Метод барьерных функций
- •47. Динамическое программирование
- •48. Распределение одного вида ресурса
- •49. Дп: задачи о кратчайшем пути и с мультипликативным критерием
- •Задача с мультипликативным критерием.
- •52. Многомерные задачи динамического программирования
- •53. Снижение размерности с помощью множителей Лагранжа
- •56. Многокритериальные задачи: постановка, проблемы, осн. Понятия, методы
- •Многокритериальная задача математического программирования
- •Где искать оптимальное решение
- •Определения
- •Условия оптимальности
- •57. Многокритериальные задачи: функция полезности, лексикографический анализ
- •Методы первой группы
- •Функция полезности
- •Решение на основе лексикографического упорядочения критериев
- •58. Методы главного критерия, свертки, идеальной точки, целевого прогр. Метод главного критерия
- •Линейная свертка
- •Максиминная свертка
- •Метод идеальной точки
- •Целевое программирование (цп)
- •59. Диалоговые методы решения задач по многим критериям
- •Метод уступок
- •Интерактивное компромиссное программирование
- •Построить таблицу
56. Многокритериальные задачи: постановка, проблемы, осн. Понятия, методы
Вся сознательная жизнь человека связана с принятием решений. Одни решения касаются только самого принимающего решения, другие относятся к небольшому кругу людей, третьи затрагивают интересы целой организации, региона и даже страны. Чем выше уровень, тем серьезнее могут быть последствия, тем выше ответственность принимающих решения. Усложнение ситуаций, в которых приходится принимать решения, вызвало потребность в научной поддержке, что привело к развитию нового подхода, получившего название исследование операций. Однако до начала семидесятых годов в рамках исследования операций рассматривались в основном задачи, в которых эффективность решения оценивалась одним критерием. В то время считалось, что требования, предъявляемые к решению, можно выразить одним показателем качества. Методы математического программирования, интенсивно развиваемые в исследовании операций, изначально ориентировались на решение однокритериальных задач.
Со временем росло понимание неадекватности такого подхода реальным процессам принятия решений. Все яснее становилась необходимость учитывать существование более одного показателя эффективности, оптимальные решения по которым не совпадают. С этого периода началось бурное развитие многокритериальных методов принятия решений и, в частности, методов многокритериального математического программирования.
Многокритериальность может быть обусловлена одной из трех причин:
Цель не может быть адекватно представлена (покрыта) одним критерием.
Принимающий решения ставит более одной цели, которые связаны общими активными средствами.
Решения принимаются группой лиц с несовпадающими интересами.
Так для характеристики цели «Повысить уровень жизни народа» требуется целый ряд показателей. При выборе номенклатуры и количества выпускаемых изделий начинающая фирма может преследовать как тактическую цель – получение высокой прибыли в ближайшее время, так и стратегическую – закрепление на рынке сбыта и его расширение. В качестве примера третьей ситуации можно привести переговоры России и Казахстана по космодрому Байконур.
В этой главе изложение затронутых проблем будет ограничено в основном многокритериальными задачами математического программирования. Естественно, что круг задач принятия решений при многих критериях существенно шире.
Многокритериальная задача математического программирования
В
формальном представлении критерии
(целевые функции), по которым оценивается
решение Х, будет записываться в виде
fi(Х),
.
Критерий fi называют также частными. Для удобства рассуждений примем, что для всех i чем больше значение критерия, тем лучше. Тогда задача многокритериального математического программирования запишется в виде:
max{f1(X)=y1},
max{f2(X)=y2},
. . . . . . .
max{fm(X)=ym},
Х
D,
где D – множество допустимых решений. Иначе говоря, задача состоит в максимизации вектора критериев f(X)=Y по X D.
Существенное отличие этой задачи от традиционной однокритериальной состоит в понятии оптимальности. В однокритериальной задаче под оптимальным понимается решение, обеспечивающее максимальное значение критерия. При многих критериях увеличение одних критериев приводит к уменьшению других (редкие исключения не представляют практического интереса) и поэтому понятие оптимальности требует принципиальных уточнений. Очевидно, что без дополнительной информации о предпочтениях ЛПР бессмысленно говорить об оптимальном решении и тем более формализованно искать его.
Допустимое
множество D строится
в n-мерном пространстве
переменных. Каждое решение X
D
полностью характеризуется соответствующими
значениями всех частных критериев, т.е.
вектором Y. Числовое
m-мерное пространство
Em,
координатами которого являются yi=fi(X),
называется критериальным пространством.
Очевидно, что каждому Х можно поставить
в соответствие точку в
критериальном
пространстве. Если же решение Х допустимо,
то соответствующая точка в Em,
определяемая вектором Y,
является достижимой. Множество
таких точек в критериальном пространстве
называется множеством достижимости
(достижимых векторов). Таким образом,
векторная функция f(X)
отображает допустимое множество D
на множестве достижимости G:
и задача состоит в выборе вектора из этого множества, наилучшего с точки зрения ЛПР.
В общем случае построение множества G для реальных задач весьма проблематично, но для задач с «хорошими» свойствами, например, линейных, множество достижимости может быть построено.
