Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ На БИлеты по химии ПАШинин.doc
Скачиваний:
8
Добавлен:
22.07.2019
Размер:
326.66 Кб
Скачать

1. Электроды, состоящие из элементарного вещества, находящегося в контакте с раствором, содержащим его собственные ионы.

а) Металлический электрод – металл, погруженный в раствор своей соли M|Mn+, например, цинковый и медный электроды:

Металлический электрод обратим по отношению к катиону. Его электродный потенциал

б) Газовый электрод в качестве одного из компонентов электродной пары содержит газ (H2, Cl2 и др.), адсорбированный на химически инертном проводнике первого рода (обычно платина, покрытая платиновой чернью). При контакте адсорбированного газа с раствором собственных ионов устанавливается равновесие. Для хлорного и водородного электродов это равновесие можно представить уравнениями:

Соответствующие им уравнения Нернста имеют вид:

Очевидно, что их электродный потенциал зависит от давления и активности (концентрации) ионов в растворе.

2. Редокс-электроды состоят из электрохимически инертного проводника (платины, графита и т. д.), погруженного в раствор, в котором находятся окисленная и восстановленная формы потенциалопределяющего вещества. Такой инертный проводник способствует передаче электронов от восстановителя к окислителю через внешнюю цепь. Примерами таких электродов могут служить редокс-электроды с ионами в различных степенях окисления: (Pt)Sn4+, Sn2+, (Pt)Fe3+, Fe2+.

Электроды второго рода представляют собой металлические электроды, покрытые слоем труднорастворимой соли того же металла. При погружении в раствор соли одноименного аниона его потенциал будет определяться активностью иона в растворе.

а) Хлорсеребряный электрод (ХСЭ) Ag, AgCl|Cl– представляет собой серебряный проводник, покрытый твердым AgCl, который погружен в насыщенный раствор KCl.

Серебро электрохимически взаимодействует со своим ионом:

Ag+ + e– = Ag.

Уравнение Нернста для этого процесса:

Однако в присутствии труднорастворимого AgCl активность ионов серебра очень мала и ее трудно определить. Но активность ионов Ag+ связана с легко задаваемой в данной системе активностью ионов Cl– произведением растворимости хлорида серебра ПРAgCl:

откуда

Подставляя это выражение в (7.2)

и обозначив

получим уравнение Нернста для хлорсеребряного электрода:

Потенциалопределяющими являются ионы хлора, а электродный процесс может быть представлен уравнением

б) Каломельный электрод (КЭ) Hg, Hg2Cl2|Cl– – это ртуть, находящаяся в контакте с пастой из смеси ртути и каломели Hg2Cl2, которая, в свою очередь, соприкасается с насыщенным раствором KCl.

Принцип действия каломельного электрода тот же, что и хлорсеребряного.

Электродная реакция сводится к восстановлению каломели до металлической ртути:

Потенциал каломельного электрода определяется активностью ионов хлора:

Ионоселективные электроды (ИСЭ), чувствительные к катионам и анионам, представляют собой электрохимические системы, в которых потенциал определяется процессами распределения ионов между мембраной и раствором.

Мембрана разделяет два раствора (исследуемый и стандартный), содержащие ионы, способные проникнуть в мембрану и двигаться в ней. Стандартный раствор содержит только один вид мембраноактивных ионов A+. Состав стандартного раствора неизменен. В настоящее время широко применяются ИСЭ с четко выраженной избирательностью к большому числу катионов и анионов.

Наиболее распространенными ИСЭ являются стеклянные электроды. Стекло рассматривается как твердый электролит, способный вступать в ионное взаимодействие с раствором. Стекла, содержащие катионы Na, Li, Ca, обладают сродством к ионам , введением в состав стекла оксидов Al и B удалось создать ИСЭ для ионов , , Li+, Ag+, Tl+ и др.

Стеклянный электрод для определения концентрации состоит из стеклянного тонкостенного шарика, припаянного к стеклянной трубке. В шарик налит раствор HCl (внутренний раствор, моль•л–1), в который опущен хлорсеребряный электрод. При погружении стеклянного электрода в раствор с измеряемой концентрацией H+ (внешний раствор) между мембраной и исследуемым раствором (р) происходят процессы ионного обмена:

приводящие к разности потенциалов.

Потенциал стеклянного электрода равен

Стеклянные электроды обычно используют для определения pH.

Водородный электрод, выбранный за нулевую точку при сравнении электродных потенциалов, в качестве рабочего электрода сравнения практически не используется. Это связано со многоми конструкциоными, технологическими и эксплуатационными трудностями: газообразный водород очень критичен даже к малейшим примесям, его давление должно строго соответствовать 100 кПа, а активность ионов водорода в растворе – строго соответствовать единице, поверхность платинового электрода должна быть чистой и сохранять каталитические свойства в течение долгого времени. Поэтому в качестве электродов сравнения обычно используют лишенные этих неудобств электроды второго рода; чаще других хлорсеребряный (ХСЭ) и каломельный (КЭ), так как при постоянной концентрации ионов хлора их потенциалы остаются постоянными. Кроме ХСЭ и КЭ очень удобным в работе оказался стеклянный электрод.

Если гальванический элемент составлен из полуэлементов сравнения, то он обладает высокой стабильностью, его ЭДС не меняется многие годы.

=============================================

БИЛЕТ 9.1

Гипотеза Дж. Томсона о структуре атома — первая попытка объединить имевшиеся научные данные о сложном составе атома в «модель» атома. В 1904 г. в работе «О структуре атома» Дж. Томсон дал описание своей модели, получившей образное название «сливового пудинга». В этой модели атом уподоблен сферической капле пудинга с положительным зарядом. Внутрь сферы вкраплены отрицательно заряженные «сливины»-электроны. Электроны совершают колебательные движения, благодаря которым атом излучает электромагнитную энергию. Атом в целом нейтрален. Модель атома Дж. Томсона не была подтверждена экспериментальными фактами и осталась гипотезой. Представления о составе атома и движении электронов в нем вошли в модель атома Э. Резерфорда.

Планетарная модель атома Э. Резерфорда (1911 г.), согласно которой атом состоит из положительно заряженного ядра и электронов, вращающихся вокруг ядра по замкнутым орбитам подобно движению планет вокруг Солнца. Э. Резерфорд — основоположник современного учения об атоме — построил наглядную теоретическую модель атома, которой формально мы пользуемся и сейчас. Классическая теория Резерфорда не могла объяснить излучение и поглощение энергии атомом. Квантовые постулаты Н. Бора (1913 г.) внесли в планетарную модель атома Э. Резерфорда квантовые представления. Постулаты Н. Бора опирались на теоретические идеи М. Планка (1900 г.) и А. Эйнштейна (1905 г.). Первый постулат. Электрон вращается вокруг ядра по строго определенным замкнутым стационарным орбитам в соответствии с «разрешенными» значениями энергии Е1, Е2, ••., Еп, при этом энергия не поглощается и не излучается. Второй постулат. Электрон переходит из одного «разрешенного» энергетического состояния в другое, что сопровождается излучением или поглощением кванта энергии. Бор внес квантовые представления в строение атома, но он использовал традиционные классические понятия механики, рассматривая электрон как частицу, движущуюся со строго определенными скоростями по строго определенным траекториям.

Его теория была построена на противоречиях. В 1932 г. была разработана протонно-нейтронная теория ядра, согласно которой ядра атомов состоят из протонов и нейтронов. Атом — электронейтралъная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.

Электроны, протоны и нейтроны называют элементарными частицами.

Вопр 2

Для определения величины ?G в условиях, отличных от стандартных, используют уравнение зависимости изобарно-изотермического потенциала от концентрации и температуры.

Используя соотношения (4.1) и (4.2), получаем:

?G = ?U + P?V – T?S

(4.3)

Рассмотрим вместо небольших, но конечных изменений (?G, ?H, ?S) бесконечно малые изменения всех параметров, входящих в уравнение (4.3). Тогда оно приобретает вид:

dG = dU + PdV + VdP – TdS – SdT. (4.4)

Подставив в него dU = ?Q – ?A, получим:

dG = ?Q – ?A + PdV + VdP – TdS – SdT. (4.5)

Если реакция протекает при постоянной температуре (SdT = 0) и обратимо (?Q = TdS), а единственной совершаемой в ходе реакции работой является работа расширения (?А = PdV), то в правой части (4.5) все члены, кроме VdP, взаимно сокращаются или равны нулю. Тогда получаем:

dG = VdP.

Для одного моля идеального газа V = RT / P и, следовательно,

dG = RT dP / P = RT d(lnP)

Интегрируя, получаем

Это уравнение позволяет, зная молярную энергию Гиббса идеального газа G1 при парциальном давлении P1, вычислить молярную энергию Гиббса G2 при парциальном давлении P2. Хотя уравнение 4.6 выведено для обратимой реакции, оно в равной мере применимо и к необратимым процессам, поскольку G является функцией состояния, и ее изменение не зависят от способа перехода из состояния 1 в состояние 2. Допустив, что состояние 1 является стандартным, а состояние 2 произвольным, уравнение (4.6) можно записать в виде:

где – стандартный изобарно-изотермический потенциал вещества j; – его активная концентрация (активность).

Для идеальных растворов активная концентрация определяется как отношение концентрации этого вещества при заданных условиях к его концентрации в стандартном состоянии a = C/C°. Вещества в стандартном состоянии имеют a = 1.

В соответствии с (4.7) энергия Гиббса произвольной химической реакции

aА + bВ = lL + mМ

равна:

При достижении равновесия (?G = 0) уравнение (4.8) принимает вид

где – равновесные значения активных концентраций.

Выражение под знаком логарифма, представляющее собой отношение произведения равновесных активностей продуктов к произведению активностей исходных веществ в степенях их стехиометрических коэффициентов, называется константой равновесия:

Подставив (4.9) в (4.8), получим уравнение, носящее название изотермы Вант-Гоффа:

При определенных условиях активности реагентов могут быть заменены концентрациями или парциальными давлениями. В этих случаях константа равновесия, выраженная через равновесные концентрации Kc или через парциальные давления Kр, принимает вид

Уравнения (4.11) и (4.12) представляют собой варианты закона действующих масс (ЗДМ) для обратимых реакций в состоянии равновесия. При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная (К. Гульдберг, П. Вааге, 1867 г.).

Для газообразных веществ Kp и Kc связаны соотношением Kp = (RT)?nKc, где ?n – разность числа молей начальных и конечных газообразных реагентов.

Константа равновесия определяется при известных равновесных концентрациях реагирующих веществ или по известной ?G° химической реакции.

=============================================