- •Простое экспоненциальное сглаживание
- •Линейное экспоненциальное сглаживание
- •Квадратичное экспоненциальное сглаживание
- •Проверка на наличие основной тенденции
- •Анализ графика и периодограммы
- •Спектральный анализ остатков кривой Гомперца
- •Метод сезонной корректировки
- •Расчет разностей
- •Проверка гипотез для разности первого порядка
- •Сравнение моделей
Метод сезонной корректировки
Выделим сезонную компоненту на основе четырёхквартальной хронологической скользящей средней (m=4):
Расчеты для аддитивной и мультипликативной формы в приложении 17. В таблице 20 приведены предварительные и окончательные оценки сезонной составляющей модели, которые рассчитаны по формулам:
Предварительные
оценки:
Корректировка оценок
Для аддитивного
представления:
Для мультипликативного
представления:
квартал |
наблюдений |
предварительная оценка |
окончательная оценка |
||
аддит |
мулипл |
аддит |
мулипл |
||
1 |
31 |
9,7589 |
1,0085 |
9,696905 |
1,01702 |
2 |
31 |
4,4227 |
1,0042 |
4,360696 |
1,01268 |
3 |
31 |
-11,21 |
0,9574 |
-11,2706 |
0,96549 |
4 |
31 |
-2,725 |
0,9964 |
-2,78697 |
1,00481 |
сумма |
0,2479 |
3,9664 |
0 |
4 |
|
Таблица 20
Посчитаем информационные характеристики для полученных моделей.
|
аддитивная |
мультипликативная |
SSer |
2555560,5 |
2607535,536 |
s^2 |
19965,31641 |
20371,37138 |
s |
141,298678 |
142,7283132 |
SStot |
3657390,203 |
3657390,203 |
R^2 |
0,301769777 |
0,287569158 |
Таблица 21
У аддитивной формы характеристики немного лучше, чем у мультипликативной. Но нельзя сказать, что результат удовлетворительный, так ка R^2 равен всего 30,2%
Этап 7. Выбор модели
В ходе исследования были рассмотрены модели временного ряда нескольких классов: средней, простой скользящей средней, экспоненциальное сглаживание Брауна (простое, линейное и квадратичное), модель тренда и модель тренда с учетом сезонности, а также авторегрессионные модели.
Для определения модели генератора прогноза сравним модели с лучшими прогностическими характеристиками:
модель простого, линейного и квадратичного экспоненциального сглаживания Брауна
ARIMA(3,3,1).
модель |
параметры |
Характеристики модели |
||||
R^2 |
s^2 |
Kt1 |
Kt2 |
Ut |
||
Простой экспоненциальной средней |
a=0,95 |
0,921530921 |
20,35529531 |
0,048168 |
0,03325 |
0,023518 |
линейной экспоненциальной средней |
a=0,6 |
0,909006918 |
2639,819257 |
0,033543 |
0,023324 |
0,016495 |
квадратичной экспоненциальной средней |
a=0,5 |
0,882301543 |
3441,89106 |
0,020884 |
0,014614 |
0,010334 |
ARIMA |
p=3,d=3,q=1 |
0,902331111 |
2898,747253 |
0,015794 |
0,01108 |
0,007835 |
Таблица 22
Модель ARIMA имеет лучшие прогностические характеристики. Также стоит отметить, что модели экспоненциальной средней проходят не все тесты. Модель линейного и квадратичного экспоненциального сглаживания Брауна не проходят тест на равенство дисперсий и на автокорреляцию. Модель простого экспоненциального сглаживания не проходит тест на равенство дисперсий.
Models
(A) Simple exponential smoothing with alpha = 0,95
(B) Brown's linear exp. smoothing with alpha = 0,6
(C) Brown's quadratic exp. smoothing with alpha = 0,5
(D) ARIMA(3,3,1)
Estimation Period
Model |
RMSE |
RUNS |
RUNM |
AUTO |
MEAN |
VAR |
(A) |
47,3383 |
OK |
OK |
OK |
OK |
* |
(B) |
50,9762 |
OK |
OK |
* |
OK |
* |
(C) |
57,976 |
OK |
OK |
** |
OK |
* |
(D) |
53,84 |
OK |
OK |
OK |
OK |
OK |
Исходя из этого, следует выбрать модель ARIMA. Выбранная модель имеет вид:
Интервальный прогноз на период упреждения:
Значение индекса находится в интервале от 928,71 до 1131,61.
Приложения
Приложение 1
Значения индекса потребительских товаров на начало месяца
AEX CONSUMER GOODS |
||
№ |
Date |
closing |
1 |
02.01.2001 |
813,17 |
2 |
01.02.2001 |
877,02 |
3 |
01.03.2001 |
844,36 |
4 |
02.04.2001 |
856,69 |
5 |
01.05.2001 |
924,97 |
6 |
01.06.2001 |
953,18 |
7 |
02.07.2001 |
892,74 |
8 |
01.08.2001 |
874,46 |
9 |
03.09.2001 |
771,4 |
10 |
01.10.2001 |
785,72 |
11 |
01.11.2001 |
829,36 |
12 |
03.12.2001 |
865,08 |
13 |
02.01.2002 |
892,15 |
14 |
01.02.2002 |
947,28 |
15 |
01.03.2002 |
948,6 |
16 |
02.04.2002 |
992,79 |
17 |
02.05.2002 |
1017,36 |
18 |
03.06.2002 |
997,49 |
19 |
01.07.2002 |
911,97 |
20 |
01.08.2002 |
837,21 |
21 |
02.09.2002 |
857,42 |
22 |
01.10.2002 |
798,01 |
23 |
01.11.2002 |
859,33 |
24 |
02.12.2002 |
849,27 |
25 |
02.01.2003 |
838,65 |
26 |
03.02.2003 |
824,31 |
27 |
03.03.2003 |
820,56 |
28 |
01.04.2003 |
821,28 |
29 |
02.05.2003 |
812,44 |
30 |
02.06.2003 |
786,55 |
31 |
01.07.2003 |
804,84 |
32 |
01.08.2003 |
834,95 |
33 |
01.09.2003 |
863,61 |
34 |
01.10.2003 |
816,88 |
35 |
03.11.2003 |
862,39 |
36 |
01.12.2003 |
839,67 |
37 |
02.01.2004 |
812,22 |
38 |
02.02.2004 |
822,04 |
39 |
01.03.2004 |
823,26 |
40 |
01.04.2004 |
843,39 |
41 |
03.05.2004 |
865,42 |
42 |
01.06.2004 |
825,66 |
43 |
01.07.2004 |
850,26 |
44 |
02.08.2004 |
828,34 |
45 |
01.09.2004 |
783,02 |
46 |
01.10.2004 |
807,71 |
47 |
01.11.2004 |
791,73 |
48 |
01.12.2004 |
829,32 |
49 |
03.01.2005 |
863,65 |
50 |
01.02.2005 |
878,19 |
51 |
01.03.2005 |
894,68 |
52 |
01.04.2005 |
873,43 |
53 |
02.05.2005 |
841,42 |
54 |
01.06.2005 |
923,94 |
55 |
01.07.2005 |
919,01 |
56 |
01.08.2005 |
919,19 |
57 |
01.09.2005 |
881,18 |
58 |
03.10.2005 |
911,06 |
59 |
01.11.2005 |
921,6 |
60 |
01.12.2005 |
1016,39 |
61 |
02.01.2006 |
1055,37 |
62 |
01.02.2006 |
1103,51 |
63 |
01.03.2006 |
1112,47 |
64 |
03.04.2006 |
1119,03 |
65 |
02.05.2006 |
1113,04 |
66 |
01.06.2006 |
1028,2 |
67 |
03.07.2006 |
1038,78 |
68 |
01.08.2006 |
1086,43 |
69 |
01.09.2006 |
1105,96 |
70 |
02.10.2006 |
1125,8 |
71 |
01.11.2006 |
1124,88 |
72 |
01.12.2006 |
1162,68 |
73 |
02.01.2007 |
1204,92 |
74 |
01.02.2007 |
1232,24 |
75 |
01.03.2007 |
1138,69 |
76 |
02.04.2007 |
1230,79 |
77 |
02.05.2007 |
1271,72 |
78 |
01.06.2007 |
1307,78 |
79 |
02.07.2007 |
1328,18 |
80 |
01.08.2007 |
1310,47 |
81 |
03.09.2007 |
1326,15 |
82 |
01.10.2007 |
1344,56 |
83 |
01.11.2007 |
1348,83 |
84 |
03.12.2007 |
1324,74 |
85 |
02.01.2008 |
1347,72 |
86 |
01.02.2008 |
1213,49 |
87 |
03.03.2008 |
1145,62 |
88 |
01.04.2008 |
1180,98 |
89 |
02.05.2008 |
1181,07 |
90 |
02.06.2008 |
1145,27 |
91 |
01.07.2008 |
995,52 |
92 |
01.08.2008 |
957,73 |
93 |
01.09.2008 |
1030,47 |
94 |
01.10.2008 |
987,7 |
95 |
03.11.2008 |
874,21 |
96 |
01.12.2008 |
749,78 |
97 |
02.01.2009 |
815,25 |
98 |
02.02.2009 |
788,89 |
99 |
02.03.2009 |
688,15 |
100 |
01.04.2009 |
689,85 |
101 |
04.05.2009 |
758,83 |
102 |
01.06.2009 |
813,63 |
103 |
01.07.2009 |
820,49 |
104 |
03.08.2009 |
906,61 |
105 |
01.09.2009 |
902,04 |
106 |
01.10.2009 |
941,57 |
107 |
02.11.2009 |
988,37 |
108 |
01.12.2009 |
1024,29 |
109 |
04.01.2010 |
1117,68 |
110 |
01.02.2010 |
1125,11 |
111 |
01.03.2010 |
1142,6 |
112 |
01.04.2010 |
1196,45 |
113 |
03.05.2010 |
1193,84 |
114 |
01.06.2010 |
1163,26 |
115 |
01.07.2010 |
1141,02 |
116 |
02.08.2010 |
1170,72 |
117 |
01.09.2010 |
1132,32 |
118 |
01.10.2010 |
1143,91 |
119 |
01.11.2010 |
1120,08 |
120 |
01.12.2010 |
1128,26 |
121 |
03.01.2011 |
1207,35 |
122 |
01.02.2011 |
1148,54 |
123 |
01.03.2011 |
1163,89 |
124 |
01.04.2011 |
1166,96 |
125 |
02.05.2011 |
1156,66 |
126 |
01.06.2011 |
1155,66 |
127 |
01.07.2011 |
1134,28 |
128 |
01.08.2011 |
1104,87 |
129 |
01.09.2011 |
1055,55 |
Приложение 2
Построение модели средней
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Constant mean = 987,152
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
169,655 |
68,3978 |
MAE |
149,707 |
68,3978 |
MAPE |
15,344 |
6,47983 |
ME |
-2,03393E-13 |
68,3978 |
MPE |
-2,87381 |
6,47983 |
Trend Model Summary
Parameter |
Estimate |
Stnd. Error |
t |
P-value |
Constant |
987,152 |
14,9955 |
65,8298 |
0,000000 |
Forecast Table for ConsGOODS
Model: Constant mean = 987,152
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
987,152 |
-173,982 |
|
2.50 |
877,02 |
987,152 |
-110,132 |
|
3.50 |
844,36 |
987,152 |
-142,792 |
|
4.50 |
856,69 |
987,152 |
-130,462 |
|
5.50 |
924,97 |
987,152 |
-62,1822 |
|
6.50 |
953,18 |
987,152 |
-33,9722 |
|
7.50 |
892,74 |
987,152 |
-94,4122 |
|
8.50 |
874,46 |
987,152 |
-112,692 |
|
9.50 |
771,4 |
987,152 |
-215,752 |
|
10.50 |
785,72 |
987,152 |
-201,432 |
|
11.50 |
829,36 |
987,152 |
-157,792 |
|
12.50 |
865,08 |
987,152 |
-122,072 |
|
1.51 |
892,15 |
987,152 |
-95,0022 |
|
2.51 |
947,28 |
987,152 |
-39,8722 |
|
3.51 |
948,6 |
987,152 |
-38,5522 |
|
4.51 |
992,79 |
987,152 |
5,63781 |
|
5.51 |
1017,36 |
987,152 |
30,2078 |
|
6.51 |
997,49 |
987,152 |
10,3378 |
|
7.51 |
911,97 |
987,152 |
-75,1822 |
|
8.51 |
837,21 |
987,152 |
-149,942 |
|
9.51 |
857,42 |
987,152 |
-129,732 |
|
10.51 |
798,01 |
987,152 |
-189,142 |
|
11.51 |
859,33 |
987,152 |
-127,822 |
|
12.51 |
849,27 |
987,152 |
-137,882 |
|
1.52 |
838,65 |
987,152 |
-148,502 |
|
2.52 |
824,31 |
987,152 |
-162,842 |
|
3.52 |
820,56 |
987,152 |
-166,592 |
|
4.52 |
821,28 |
987,152 |
-165,872 |
|
5.52 |
812,44 |
987,152 |
-174,712 |
|
6.52 |
786,55 |
987,152 |
-200,602 |
|
7.52 |
804,84 |
987,152 |
-182,312 |
|
8.52 |
834,95 |
987,152 |
-152,202 |
|
9.52 |
863,61 |
987,152 |
-123,542 |
|
10.52 |
816,88 |
987,152 |
-170,272 |
|
11.52 |
862,39 |
987,152 |
-124,762 |
|
12.52 |
839,67 |
987,152 |
-147,482 |
|
1.53 |
812,22 |
987,152 |
-174,932 |
|
2.53 |
822,04 |
987,152 |
-165,112 |
|
3.53 |
823,26 |
987,152 |
-163,892 |
|
4.53 |
843,39 |
987,152 |
-143,762 |
|
5.53 |
865,42 |
987,152 |
-121,732 |
|
6.53 |
825,66 |
987,152 |
-161,492 |
|
7.53 |
850,26 |
987,152 |
-136,892 |
|
8.53 |
828,34 |
987,152 |
-158,812 |
|
9.53 |
783,02 |
987,152 |
-204,132 |
|
10.53 |
807,71 |
987,152 |
-179,442 |
|
11.53 |
791,73 |
987,152 |
-195,422 |
|
12.53 |
829,32 |
987,152 |
-157,832 |
|
1.54 |
863,65 |
987,152 |
-123,502 |
|
2.54 |
878,19 |
987,152 |
-108,962 |
|
3.54 |
894,68 |
987,152 |
-92,4722 |
|
4.54 |
873,43 |
987,152 |
-113,722 |
|
5.54 |
841,42 |
987,152 |
-145,732 |
|
6.54 |
923,94 |
987,152 |
-63,2122 |
|
7.54 |
919,01 |
987,152 |
-68,1422 |
|
8.54 |
919,19 |
987,152 |
-67,9622 |
|
9.54 |
881,18 |
987,152 |
-105,972 |
|
10.54 |
911,06 |
987,152 |
-76,0922 |
|
11.54 |
921,6 |
987,152 |
-65,5522 |
|
12.54 |
1016,39 |
987,152 |
29,2378 |
|
1.55 |
1055,37 |
987,152 |
68,2178 |
|
2.55 |
1103,51 |
987,152 |
116,358 |
|
3.55 |
1112,47 |
987,152 |
125,318 |
|
4.55 |
1119,03 |
987,152 |
131,878 |
|
5.55 |
1113,04 |
987,152 |
125,888 |
|
6.55 |
1028,2 |
987,152 |
41,0478 |
|
7.55 |
1038,78 |
987,152 |
51,6278 |
|
8.55 |
1086,43 |
987,152 |
99,2778 |
|
9.55 |
1105,96 |
987,152 |
118,808 |
|
10.55 |
1125,8 |
987,152 |
138,648 |
|
11.55 |
1124,88 |
987,152 |
137,728 |
|
12.55 |
1162,68 |
987,152 |
175,528 |
|
1.56 |
1204,92 |
987,152 |
217,768 |
|
2.56 |
1232,24 |
987,152 |
245,088 |
|
3.56 |
1138,69 |
987,152 |
151,538 |
|
4.56 |
1230,79 |
987,152 |
243,638 |
|
5.56 |
1271,72 |
987,152 |
284,568 |
|
6.56 |
1307,78 |
987,152 |
320,628 |
|
7.56 |
1328,18 |
987,152 |
341,028 |
|
8.56 |
1310,47 |
987,152 |
323,318 |
|
9.56 |
1326,15 |
987,152 |
338,998 |
|
10.56 |
1344,56 |
987,152 |
357,408 |
|
11.56 |
1348,83 |
987,152 |
361,678 |
|
12.56 |
1324,74 |
987,152 |
337,588 |
|
1.57 |
1347,72 |
987,152 |
360,568 |
|
2.57 |
1213,49 |
987,152 |
226,338 |
|
3.57 |
1145,62 |
987,152 |
158,468 |
|
4.57 |
1180,98 |
987,152 |
193,828 |
|
5.57 |
1181,07 |
987,152 |
193,918 |
|
6.57 |
1145,27 |
987,152 |
158,118 |
|
7.57 |
995,52 |
987,152 |
8,36781 |
|
8.57 |
957,73 |
987,152 |
-29,4222 |
|
9.57 |
1030,47 |
987,152 |
43,3178 |
|
10.57 |
987,7 |
987,152 |
0,547812 |
|
11.57 |
874,21 |
987,152 |
-112,942 |
|
12.57 |
749,78 |
987,152 |
-237,372 |
|
1.58 |
815,25 |
987,152 |
-171,902 |
|
2.58 |
788,89 |
987,152 |
-198,262 |
|
3.58 |
688,15 |
987,152 |
-299,002 |
|
4.58 |
689,85 |
987,152 |
-297,302 |
|
5.58 |
758,83 |
987,152 |
-228,322 |
|
6.58 |
813,63 |
987,152 |
-173,522 |
|
7.58 |
820,49 |
987,152 |
-166,662 |
|
8.58 |
906,61 |
987,152 |
-80,5422 |
|
9.58 |
902,04 |
987,152 |
-85,1122 |
|
10.58 |
941,57 |
987,152 |
-45,5822 |
|
11.58 |
988,37 |
987,152 |
1,21781 |
|
12.58 |
1024,29 |
987,152 |
37,1378 |
|
1.59 |
1117,68 |
987,152 |
130,528 |
|
2.59 |
1125,11 |
987,152 |
137,958 |
|
3.59 |
1142,6 |
987,152 |
155,448 |
|
4.59 |
1196,45 |
987,152 |
209,298 |
|
5.59 |
1193,84 |
987,152 |
206,688 |
|
6.59 |
1163,26 |
987,152 |
176,108 |
|
7.59 |
1141,02 |
987,152 |
153,868 |
|
8.59 |
1170,72 |
987,152 |
183,568 |
|
9.59 |
1132,32 |
987,152 |
145,168 |
|
10.59 |
1143,91 |
987,152 |
156,758 |
|
11.59 |
1120,08 |
987,152 |
132,928 |
|
12.59 |
1128,26 |
987,152 |
141,108 |
|
1.60 |
1207,35 |
987,152 |
220,198 |
|
2.60 |
1148,54 |
987,152 |
161,388 |
|
3.60 |
1163,89 |
987,152 |
176,738 |
|
4.60 |
1166,96 |
987,152 |
179,808 |
|
5.60 |
1156,66 |
987,152 |
169,508 |
|
6.60 |
1155,66 |
987,152 |
168,508 |
|
7.60 |
1134,28 |
987,152 |
147,128 |
|
8.60 |
1104,87 |
987,152 |
117,718 |
|
9.60 |
1055,55 |
987,152 |
68,3978 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
987,152 |
650,126 |
1324,18 |
Приложение 3
Построение модели простой скользящей средней
m=2
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple moving average of 2 terms
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
54,9811 |
64,025 |
MAE |
41,4088 |
64,025 |
MAPE |
4,34041 |
6,06556 |
ME |
3,08258 |
-64,025 |
MPE |
0,113864 |
-6,06556 |
Forecast Table for ConsGOODS
Model: Simple moving average of 2 terms
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
|
|
|
2.50 |
877,02 |
|
|
|
3.50 |
844,36 |
845,095 |
-0,735 |
|
4.50 |
856,69 |
860,69 |
-4,0 |
|
5.50 |
924,97 |
850,525 |
74,445 |
|
6.50 |
953,18 |
890,83 |
62,35 |
|
7.50 |
892,74 |
939,075 |
-46,335 |
|
8.50 |
874,46 |
922,96 |
-48,5 |
|
9.50 |
771,4 |
883,6 |
-112,2 |
|
10.50 |
785,72 |
822,93 |
-37,21 |
|
11.50 |
829,36 |
778,56 |
50,8 |
|
12.50 |
865,08 |
807,54 |
57,54 |
|
1.51 |
892,15 |
847,22 |
44,93 |
|
2.51 |
947,28 |
878,615 |
68,665 |
|
3.51 |
948,6 |
919,715 |
28,885 |
|
4.51 |
992,79 |
947,94 |
44,85 |
|
5.51 |
1017,36 |
970,695 |
46,665 |
|
6.51 |
997,49 |
1005,08 |
-7,585 |
|
7.51 |
911,97 |
1007,43 |
-95,455 |
|
8.51 |
837,21 |
954,73 |
-117,52 |
|
9.51 |
857,42 |
874,59 |
-17,17 |
|
10.51 |
798,01 |
847,315 |
-49,305 |
|
11.51 |
859,33 |
827,715 |
31,615 |
|
12.51 |
849,27 |
828,67 |
20,6 |
|
1.52 |
838,65 |
854,3 |
-15,65 |
|
2.52 |
824,31 |
843,96 |
-19,65 |
|
3.52 |
820,56 |
831,48 |
-10,92 |
|
4.52 |
821,28 |
822,435 |
-1,155 |
|
5.52 |
812,44 |
820,92 |
-8,48 |
|
6.52 |
786,55 |
816,86 |
-30,31 |
|
7.52 |
804,84 |
799,495 |
5,345 |
|
8.52 |
834,95 |
795,695 |
39,255 |
|
9.52 |
863,61 |
819,895 |
43,715 |
|
10.52 |
816,88 |
849,28 |
-32,4 |
|
11.52 |
862,39 |
840,245 |
22,145 |
|
12.52 |
839,67 |
839,635 |
0,035 |
|
1.53 |
812,22 |
851,03 |
-38,81 |
|
2.53 |
822,04 |
825,945 |
-3,905 |
|
3.53 |
823,26 |
817,13 |
6,13 |
|
4.53 |
843,39 |
822,65 |
20,74 |
|
5.53 |
865,42 |
833,325 |
32,095 |
|
6.53 |
825,66 |
854,405 |
-28,745 |
|
7.53 |
850,26 |
845,54 |
4,72 |
|
8.53 |
828,34 |
837,96 |
-9,62 |
|
9.53 |
783,02 |
839,3 |
-56,28 |
|
10.53 |
807,71 |
805,68 |
2,03 |
|
11.53 |
791,73 |
795,365 |
-3,635 |
|
12.53 |
829,32 |
799,72 |
29,6 |
|
1.54 |
863,65 |
810,525 |
53,125 |
|
2.54 |
878,19 |
846,485 |
31,705 |
|
3.54 |
894,68 |
870,92 |
23,76 |
|
4.54 |
873,43 |
886,435 |
-13,005 |
|
5.54 |
841,42 |
884,055 |
-42,635 |
|
6.54 |
923,94 |
857,425 |
66,515 |
|
7.54 |
919,01 |
882,68 |
36,33 |
|
8.54 |
919,19 |
921,475 |
-2,285 |
|
9.54 |
881,18 |
919,1 |
-37,92 |
|
10.54 |
911,06 |
900,185 |
10,875 |
|
11.54 |
921,6 |
896,12 |
25,48 |
|
12.54 |
1016,39 |
916,33 |
100,06 |
|
1.55 |
1055,37 |
968,995 |
86,375 |
|
2.55 |
1103,51 |
1035,88 |
67,63 |
|
3.55 |
1112,47 |
1079,44 |
33,03 |
|
4.55 |
1119,03 |
1107,99 |
11,04 |
|
5.55 |
1113,04 |
1115,75 |
-2,71 |
|
6.55 |
1028,2 |
1116,03 |
-87,835 |
|
7.55 |
1038,78 |
1070,62 |
-31,84 |
|
8.55 |
1086,43 |
1033,49 |
52,94 |
|
9.55 |
1105,96 |
1062,61 |
43,355 |
|
10.55 |
1125,8 |
1096,2 |
29,605 |
|
11.55 |
1124,88 |
1115,88 |
9,0 |
|
12.55 |
1162,68 |
1125,34 |
37,34 |
|
1.56 |
1204,92 |
1143,78 |
61,14 |
|
2.56 |
1232,24 |
1183,8 |
48,44 |
|
3.56 |
1138,69 |
1218,58 |
-79,89 |
|
4.56 |
1230,79 |
1185,47 |
45,325 |
|
5.56 |
1271,72 |
1184,74 |
86,98 |
|
6.56 |
1307,78 |
1251,26 |
56,525 |
|
7.56 |
1328,18 |
1289,75 |
38,43 |
|
8.56 |
1310,47 |
1317,98 |
-7,51 |
|
9.56 |
1326,15 |
1319,33 |
6,825 |
|
10.56 |
1344,56 |
1318,31 |
26,25 |
|
11.56 |
1348,83 |
1335,36 |
13,475 |
|
12.56 |
1324,74 |
1346,69 |
-21,955 |
|
1.57 |
1347,72 |
1336,78 |
10,935 |
|
2.57 |
1213,49 |
1336,23 |
-122,74 |
|
3.57 |
1145,62 |
1280,61 |
-134,985 |
|
4.57 |
1180,98 |
1179,55 |
1,425 |
|
5.57 |
1181,07 |
1163,3 |
17,77 |
|
6.57 |
1145,27 |
1181,03 |
-35,755 |
|
7.57 |
995,52 |
1163,17 |
-167,65 |
|
8.57 |
957,73 |
1070,4 |
-112,665 |
|
9.57 |
1030,47 |
976,625 |
53,845 |
|
10.57 |
987,7 |
994,1 |
-6,4 |
|
11.57 |
874,21 |
1009,09 |
-134,875 |
|
12.57 |
749,78 |
930,955 |
-181,175 |
|
1.58 |
815,25 |
811,995 |
3,255 |
|
2.58 |
788,89 |
782,515 |
6,375 |
|
3.58 |
688,15 |
802,07 |
-113,92 |
|
4.58 |
689,85 |
738,52 |
-48,67 |
|
5.58 |
758,83 |
689,0 |
69,83 |
|
6.58 |
813,63 |
724,34 |
89,29 |
|
7.58 |
820,49 |
786,23 |
34,26 |
|
8.58 |
906,61 |
817,06 |
89,55 |
|
9.58 |
902,04 |
863,55 |
38,49 |
|
10.58 |
941,57 |
904,325 |
37,245 |
|
11.58 |
988,37 |
921,805 |
66,565 |
|
12.58 |
1024,29 |
964,97 |
59,32 |
|
1.59 |
1117,68 |
1006,33 |
111,35 |
|
2.59 |
1125,11 |
1070,99 |
54,125 |
|
3.59 |
1142,6 |
1121,4 |
21,205 |
|
4.59 |
1196,45 |
1133,86 |
62,595 |
|
5.59 |
1193,84 |
1169,53 |
24,315 |
|
6.59 |
1163,26 |
1195,15 |
-31,885 |
|
7.59 |
1141,02 |
1178,55 |
-37,53 |
|
8.59 |
1170,72 |
1152,14 |
18,58 |
|
9.59 |
1132,32 |
1155,87 |
-23,55 |
|
10.59 |
1143,91 |
1151,52 |
-7,61 |
|
11.59 |
1120,08 |
1138,12 |
-18,035 |
|
12.59 |
1128,26 |
1131,99 |
-3,735 |
|
1.60 |
1207,35 |
1124,17 |
83,18 |
|
2.60 |
1148,54 |
1167,8 |
-19,265 |
|
3.60 |
1163,89 |
1177,94 |
-14,055 |
|
4.60 |
1166,96 |
1156,22 |
10,745 |
|
5.60 |
1156,66 |
1165,43 |
-8,765 |
|
6.60 |
1155,66 |
1161,81 |
-6,15 |
|
7.60 |
1134,28 |
1156,16 |
-21,88 |
|
8.60 |
1104,87 |
1144,97 |
-40,1 |
|
9.60 |
1055,55 |
1119,57 |
-64,025 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1080,21 |
948,23 |
1212,19 |
m=3
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple moving average of 3 terms
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
62,2053 |
76,0533 |
MAE |
47,1899 |
76,0533 |
MAPE |
4,94738 |
7,20509 |
ME |
4,36944 |
-76,0533 |
MPE |
0,17137 |
-7,20509 |
Forecast Table for ConsGOODS
Model: Simple moving average of 3 terms
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
|
|
|
2.50 |
877,02 |
|
|
|
3.50 |
844,36 |
|
|
|
4.50 |
856,69 |
844,85 |
11,84 |
|
5.50 |
924,97 |
859,357 |
65,6133 |
|
6.50 |
953,18 |
875,34 |
77,84 |
|
7.50 |
892,74 |
911,613 |
-18,8733 |
|
8.50 |
874,46 |
923,63 |
-49,17 |
|
9.50 |
771,4 |
906,793 |
-135,393 |
|
10.50 |
785,72 |
846,2 |
-60,48 |
|
11.50 |
829,36 |
810,527 |
18,8333 |
|
12.50 |
865,08 |
795,493 |
69,5867 |
|
1.51 |
892,15 |
826,72 |
65,43 |
|
2.51 |
947,28 |
862,197 |
85,0833 |
|
3.51 |
948,6 |
901,503 |
47,0967 |
|
4.51 |
992,79 |
929,343 |
63,4467 |
|
5.51 |
1017,36 |
962,89 |
54,47 |
|
6.51 |
997,49 |
986,25 |
11,24 |
|
7.51 |
911,97 |
1002,55 |
-90,5767 |
|
8.51 |
837,21 |
975,607 |
-138,397 |
|
9.51 |
857,42 |
915,557 |
-58,1367 |
|
10.51 |
798,01 |
868,867 |
-70,8567 |
|
11.51 |
859,33 |
830,88 |
28,45 |
|
12.51 |
849,27 |
838,253 |
11,0167 |
|
1.52 |
838,65 |
835,537 |
3,11333 |
|
2.52 |
824,31 |
849,083 |
-24,7733 |
|
3.52 |
820,56 |
837,41 |
-16,85 |
|
4.52 |
821,28 |
827,84 |
-6,56 |
|
5.52 |
812,44 |
822,05 |
-9,61 |
|
6.52 |
786,55 |
818,093 |
-31,5433 |
|
7.52 |
804,84 |
806,757 |
-1,91667 |
|
8.52 |
834,95 |
801,277 |
33,6733 |
|
9.52 |
863,61 |
808,78 |
54,83 |
|
10.52 |
816,88 |
834,467 |
-17,5867 |
|
11.52 |
862,39 |
838,48 |
23,91 |
|
12.52 |
839,67 |
847,627 |
-7,95667 |
|
1.53 |
812,22 |
839,647 |
-27,4267 |
|
2.53 |
822,04 |
838,093 |
-16,0533 |
|
3.53 |
823,26 |
824,643 |
-1,38333 |
|
4.53 |
843,39 |
819,173 |
24,2167 |
|
5.53 |
865,42 |
829,563 |
35,8567 |
|
6.53 |
825,66 |
844,023 |
-18,3633 |
|
7.53 |
850,26 |
844,823 |
5,43667 |
|
8.53 |
828,34 |
847,113 |
-18,7733 |
|
9.53 |
783,02 |
834,753 |
-51,7333 |
|
10.53 |
807,71 |
820,54 |
-12,83 |
|
11.53 |
791,73 |
806,357 |
-14,6267 |
|
12.53 |
829,32 |
794,153 |
35,1667 |
|
1.54 |
863,65 |
809,587 |
54,0633 |
|
2.54 |
878,19 |
828,233 |
49,9567 |
|
3.54 |
894,68 |
857,053 |
37,6267 |
|
4.54 |
873,43 |
878,84 |
-5,41 |
|
5.54 |
841,42 |
882,1 |
-40,68 |
|
6.54 |
923,94 |
869,843 |
54,0967 |
|
7.54 |
919,01 |
879,597 |
39,4133 |
|
8.54 |
919,19 |
894,79 |
24,4 |
|
9.54 |
881,18 |
920,713 |
-39,5333 |
|
10.54 |
911,06 |
906,46 |
4,6 |
|
11.54 |
921,6 |
903,81 |
17,79 |
|
12.54 |
1016,39 |
904,613 |
111,777 |
|
1.55 |
1055,37 |
949,683 |
105,687 |
|
2.55 |
1103,51 |
997,787 |
105,723 |
|
3.55 |
1112,47 |
1058,42 |
54,0467 |
|
4.55 |
1119,03 |
1090,45 |
28,58 |
|
5.55 |
1113,04 |
1111,67 |
1,37 |
|
6.55 |
1028,2 |
1114,85 |
-86,6467 |
|
7.55 |
1038,78 |
1086,76 |
-47,9767 |
|
8.55 |
1086,43 |
1060,01 |
26,4233 |
|
9.55 |
1105,96 |
1051,14 |
54,8233 |
|
10.55 |
1125,8 |
1077,06 |
48,7433 |
|
11.55 |
1124,88 |
1106,06 |
18,8167 |
|
12.55 |
1162,68 |
1118,88 |
43,8 |
|
1.56 |
1204,92 |
1137,79 |
67,1333 |
|
2.56 |
1232,24 |
1164,16 |
68,08 |
|
3.56 |
1138,69 |
1199,95 |
-61,2567 |
|
4.56 |
1230,79 |
1191,95 |
38,84 |
|
5.56 |
1271,72 |
1200,57 |
71,1467 |
|
6.56 |
1307,78 |
1213,73 |
94,0467 |
|
7.56 |
1328,18 |
1270,1 |
58,0833 |
|
8.56 |
1310,47 |
1302,56 |
7,91 |
|
9.56 |
1326,15 |
1315,48 |
10,6733 |
|
10.56 |
1344,56 |
1321,6 |
22,96 |
|
11.56 |
1348,83 |
1327,06 |
21,77 |
|
12.56 |
1324,74 |
1339,85 |
-15,1067 |
|
1.57 |
1347,72 |
1339,38 |
8,34333 |
|
2.57 |
1213,49 |
1340,43 |
-126,94 |
|
3.57 |
1145,62 |
1295,32 |
-149,697 |
|
4.57 |
1180,98 |
1235,61 |
-54,63 |
|
5.57 |
1181,07 |
1180,03 |
1,04 |
|
6.57 |
1145,27 |
1169,22 |
-23,9533 |
|
7.57 |
995,52 |
1169,11 |
-173,587 |
|
8.57 |
957,73 |
1107,29 |
-149,557 |
|
9.57 |
1030,47 |
1032,84 |
-2,37 |
|
10.57 |
987,7 |
994,573 |
-6,87333 |
|
11.57 |
874,21 |
991,967 |
-117,757 |
|
12.57 |
749,78 |
964,127 |
-214,347 |
|
1.58 |
815,25 |
870,563 |
-55,3133 |
|
2.58 |
788,89 |
813,08 |
-24,19 |
|
3.58 |
688,15 |
784,64 |
-96,49 |
|
4.58 |
689,85 |
764,097 |
-74,2467 |
|
5.58 |
758,83 |
722,297 |
36,5333 |
|
6.58 |
813,63 |
712,277 |
101,353 |
|
7.58 |
820,49 |
754,103 |
66,3867 |
|
8.58 |
906,61 |
797,65 |
108,96 |
|
9.58 |
902,04 |
846,91 |
55,13 |
|
10.58 |
941,57 |
876,38 |
65,19 |
|
11.58 |
988,37 |
916,74 |
71,63 |
|
12.58 |
1024,29 |
943,993 |
80,2967 |
|
1.59 |
1117,68 |
984,743 |
132,937 |
|
2.59 |
1125,11 |
1043,45 |
81,6633 |
|
3.59 |
1142,6 |
1089,03 |
53,5733 |
|
4.59 |
1196,45 |
1128,46 |
67,9867 |
|
5.59 |
1193,84 |
1154,72 |
39,12 |
|
6.59 |
1163,26 |
1177,63 |
-14,37 |
|
7.59 |
1141,02 |
1184,52 |
-43,4967 |
|
8.59 |
1170,72 |
1166,04 |
4,68 |
|
9.59 |
1132,32 |
1158,33 |
-26,0133 |
|
10.59 |
1143,91 |
1148,02 |
-4,11 |
|
11.59 |
1120,08 |
1148,98 |
-28,9033 |
|
12.59 |
1128,26 |
1132,1 |
-3,84333 |
|
1.60 |
1207,35 |
1130,75 |
76,6 |
|
2.60 |
1148,54 |
1151,9 |
-3,35667 |
|
3.60 |
1163,89 |
1161,38 |
2,50667 |
|
4.60 |
1166,96 |
1173,26 |
-6,3 |
|
5.60 |
1156,66 |
1159,8 |
-3,13667 |
|
6.60 |
1155,66 |
1162,5 |
-6,84333 |
|
7.60 |
1134,28 |
1159,76 |
-25,48 |
|
8.60 |
1104,87 |
1148,87 |
-43,9967 |
|
9.60 |
1055,55 |
1131,6 |
-76,0533 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1098,23 |
957,452 |
1239,01 |
m=4
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple moving average of 4 terms
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
69,2817 |
82,3175 |
MAE |
53,5199 |
82,3175 |
MAPE |
5,56878 |
7,79854 |
ME |
5,57107 |
-82,3175 |
MPE |
0,216006 |
-7,79854 |
Forecast Table for ConsGOODS
Model: Simple moving average of 4 terms
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
|
|
|
2.50 |
877,02 |
|
|
|
3.50 |
844,36 |
|
|
|
4.50 |
856,69 |
|
|
|
5.50 |
924,97 |
847,81 |
77,16 |
|
6.50 |
953,18 |
875,76 |
77,42 |
|
7.50 |
892,74 |
894,8 |
-2,06 |
|
8.50 |
874,46 |
906,895 |
-32,435 |
|
9.50 |
771,4 |
911,338 |
-139,938 |
|
10.50 |
785,72 |
872,945 |
-87,225 |
|
11.50 |
829,36 |
831,08 |
-1,72 |
|
12.50 |
865,08 |
815,235 |
49,845 |
|
1.51 |
892,15 |
812,89 |
79,26 |
|
2.51 |
947,28 |
843,078 |
104,202 |
|
3.51 |
948,6 |
883,467 |
65,1325 |
|
4.51 |
992,79 |
913,278 |
79,5125 |
|
5.51 |
1017,36 |
945,205 |
72,155 |
|
6.51 |
997,49 |
976,507 |
20,9825 |
|
7.51 |
911,97 |
989,06 |
-77,09 |
|
8.51 |
837,21 |
979,903 |
-142,693 |
|
9.51 |
857,42 |
941,008 |
-83,5875 |
|
10.51 |
798,01 |
901,023 |
-103,013 |
|
11.51 |
859,33 |
851,152 |
8,1775 |
|
12.51 |
849,27 |
837,993 |
11,2775 |
|
1.52 |
838,65 |
841,007 |
-2,3575 |
|
2.52 |
824,31 |
836,315 |
-12,005 |
|
3.52 |
820,56 |
842,89 |
-22,33 |
|
4.52 |
821,28 |
833,197 |
-11,9175 |
|
5.52 |
812,44 |
826,2 |
-13,76 |
|
6.52 |
786,55 |
819,647 |
-33,0975 |
|
7.52 |
804,84 |
810,207 |
-5,3675 |
|
8.52 |
834,95 |
806,277 |
28,6725 |
|
9.52 |
863,61 |
809,695 |
53,915 |
|
10.52 |
816,88 |
822,487 |
-5,6075 |
|
11.52 |
862,39 |
830,07 |
32,32 |
|
12.52 |
839,67 |
844,457 |
-4,7875 |
|
1.53 |
812,22 |
845,638 |
-33,4175 |
|
2.53 |
822,04 |
832,79 |
-10,75 |
|
3.53 |
823,26 |
834,08 |
-10,82 |
|
4.53 |
843,39 |
824,298 |
19,0925 |
|
5.53 |
865,42 |
825,227 |
40,1925 |
|
6.53 |
825,66 |
838,527 |
-12,8675 |
|
7.53 |
850,26 |
839,432 |
10,8275 |
|
8.53 |
828,34 |
846,183 |
-17,8425 |
|
9.53 |
783,02 |
842,42 |
-59,4 |
|
10.53 |
807,71 |
821,82 |
-14,11 |
|
11.53 |
791,73 |
817,332 |
-25,6025 |
|
12.53 |
829,32 |
802,7 |
26,62 |
|
1.54 |
863,65 |
802,945 |
60,705 |
|
2.54 |
878,19 |
823,102 |
55,0875 |
|
3.54 |
894,68 |
840,723 |
53,9575 |
|
4.54 |
873,43 |
866,46 |
6,97 |
|
5.54 |
841,42 |
877,488 |
-36,0675 |
|
6.54 |
923,94 |
871,93 |
52,01 |
|
7.54 |
919,01 |
883,367 |
35,6425 |
|
8.54 |
919,19 |
889,45 |
29,74 |
|
9.54 |
881,18 |
900,89 |
-19,71 |
|
10.54 |
911,06 |
910,83 |
0,23 |
|
11.54 |
921,6 |
907,61 |
13,99 |
|
12.54 |
1016,39 |
908,257 |
108,133 |
|
1.55 |
1055,37 |
932,558 |
122,812 |
|
2.55 |
1103,51 |
976,105 |
127,405 |
|
3.55 |
1112,47 |
1024,22 |
88,2525 |
|
4.55 |
1119,03 |
1071,93 |
47,095 |
|
5.55 |
1113,04 |
1097,6 |
15,445 |
|
6.55 |
1028,2 |
1112,01 |
-83,8125 |
|
7.55 |
1038,78 |
1093,18 |
-54,405 |
|
8.55 |
1086,43 |
1074,76 |
11,6675 |
|
9.55 |
1105,96 |
1066,61 |
39,3475 |
|
10.55 |
1125,8 |
1064,84 |
60,9575 |
|
11.55 |
1124,88 |
1089,24 |
35,6375 |
|
12.55 |
1162,68 |
1110,77 |
51,9125 |
|
1.56 |
1204,92 |
1129,83 |
75,09 |
|
2.56 |
1232,24 |
1154,57 |
77,67 |
|
3.56 |
1138,69 |
1181,18 |
-42,49 |
|
4.56 |
1230,79 |
1184,63 |
46,1575 |
|
5.56 |
1271,72 |
1201,66 |
70,06 |
|
6.56 |
1307,78 |
1218,36 |
89,42 |
|
7.56 |
1328,18 |
1237,24 |
90,935 |
|
8.56 |
1310,47 |
1284,62 |
25,8525 |
|
9.56 |
1326,15 |
1304,54 |
21,6125 |
|
10.56 |
1344,56 |
1318,15 |
26,415 |
|
11.56 |
1348,83 |
1327,34 |
21,49 |
|
12.56 |
1324,74 |
1332,5 |
-7,7625 |
|
1.57 |
1347,72 |
1336,07 |
11,65 |
|
2.57 |
1213,49 |
1341,46 |
-127,973 |
|
3.57 |
1145,62 |
1308,69 |
-163,075 |
|
4.57 |
1180,98 |
1257,89 |
-76,9125 |
|
5.57 |
1181,07 |
1221,95 |
-40,8825 |
|
6.57 |
1145,27 |
1180,29 |
-35,02 |
|
7.57 |
995,52 |
1163,24 |
-167,715 |
|
8.57 |
957,73 |
1125,71 |
-167,98 |
|
9.57 |
1030,47 |
1069,9 |
-39,4275 |
|
10.57 |
987,7 |
1032,25 |
-44,5475 |
|
11.57 |
874,21 |
992,855 |
-118,645 |
|
12.57 |
749,78 |
962,528 |
-212,748 |
|
1.58 |
815,25 |
910,54 |
-95,29 |
|
2.58 |
788,89 |
856,735 |
-67,845 |
|
3.58 |
688,15 |
807,033 |
-118,883 |
|
4.58 |
689,85 |
760,517 |
-70,6675 |
|
5.58 |
758,83 |
745,535 |
13,295 |
|
6.58 |
813,63 |
731,43 |
82,2 |
|
7.58 |
820,49 |
737,615 |
82,875 |
|
8.58 |
906,61 |
770,7 |
135,91 |
|
9.58 |
902,04 |
824,89 |
77,15 |
|
10.58 |
941,57 |
860,693 |
80,8775 |
|
11.58 |
988,37 |
892,678 |
95,6925 |
|
12.58 |
1024,29 |
934,648 |
89,6425 |
|
1.59 |
1117,68 |
964,068 |
153,613 |
|
2.59 |
1125,11 |
1017,98 |
107,132 |
|
3.59 |
1142,6 |
1063,86 |
78,7375 |
|
4.59 |
1196,45 |
1102,42 |
94,03 |
|
5.59 |
1193,84 |
1145,46 |
48,38 |
|
6.59 |
1163,26 |
1164,5 |
-1,24 |
|
7.59 |
1141,02 |
1174,04 |
-33,0175 |
|
8.59 |
1170,72 |
1173,64 |
-2,9225 |
|
9.59 |
1132,32 |
1167,21 |
-34,89 |
|
10.59 |
1143,91 |
1151,83 |
-7,92 |
|
11.59 |
1120,08 |
1146,99 |
-26,9125 |
|
12.59 |
1128,26 |
1141,76 |
-13,4975 |
|
1.60 |
1207,35 |
1131,14 |
76,2075 |
|
2.60 |
1148,54 |
1149,9 |
-1,36 |
|
3.60 |
1163,89 |
1151,06 |
12,8325 |
|
4.60 |
1166,96 |
1162,01 |
4,95 |
|
5.60 |
1156,66 |
1171,68 |
-15,025 |
|
6.60 |
1155,66 |
1159,01 |
-3,3525 |
|
7.60 |
1134,28 |
1160,79 |
-26,5125 |
|
8.60 |
1104,87 |
1153,39 |
-48,52 |
|
9.60 |
1055,55 |
1137,87 |
-82,3175 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1112,59 |
960,772 |
1264,41 |
Приложение 4
Построение модели простого экспоненциального сглаживания Брауна
a=0.3
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple exponential smoothing with alpha = 0,3
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
73,147 |
81,5233 |
MAE |
56,2 |
81,5233 |
MAPE |
5,81475 |
7,7233 |
ME |
7,31639 |
-81,5233 |
MPE |
0,246149 |
-7,7233 |
Forecast Table for ConsGOODS
Model: Simple exponential smoothing with alpha = 0,3
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
856,124 |
-42,9538 |
|
2.50 |
877,02 |
843,238 |
33,7824 |
|
3.50 |
844,36 |
853,372 |
-9,01235 |
|
4.50 |
856,69 |
850,669 |
6,02136 |
|
5.50 |
924,97 |
852,475 |
72,4949 |
|
6.50 |
953,18 |
874,224 |
78,9565 |
|
7.50 |
892,74 |
897,91 |
-5,17047 |
|
8.50 |
874,46 |
896,359 |
-21,8993 |
|
9.50 |
771,4 |
889,79 |
-118,39 |
|
10.50 |
785,72 |
854,273 |
-68,5527 |
|
11.50 |
829,36 |
833,707 |
-4,34687 |
|
12.50 |
865,08 |
832,403 |
32,6772 |
|
1.51 |
892,15 |
842,206 |
49,944 |
|
2.51 |
947,28 |
857,189 |
90,0908 |
|
3.51 |
948,6 |
884,216 |
64,3836 |
|
4.51 |
992,79 |
903,531 |
89,2585 |
|
5.51 |
1017,36 |
930,309 |
87,051 |
|
6.51 |
997,49 |
956,424 |
41,0657 |
|
7.51 |
911,97 |
968,744 |
-56,774 |
|
8.51 |
837,21 |
951,712 |
-114,502 |
|
9.51 |
857,42 |
917,361 |
-59,9413 |
|
10.51 |
798,01 |
899,379 |
-101,369 |
|
11.51 |
859,33 |
868,968 |
-9,63823 |
|
12.51 |
849,27 |
866,077 |
-16,8068 |
|
1.52 |
838,65 |
861,035 |
-22,3847 |
|
2.52 |
824,31 |
854,319 |
-30,0093 |
|
3.52 |
820,56 |
845,317 |
-24,7565 |
|
4.52 |
821,28 |
837,89 |
-16,6096 |
|
5.52 |
812,44 |
832,907 |
-20,4667 |
|
6.52 |
786,55 |
826,767 |
-40,2167 |
|
7.52 |
804,84 |
814,702 |
-9,86168 |
|
8.52 |
834,95 |
811,743 |
23,2068 |
|
9.52 |
863,61 |
818,705 |
44,9048 |
|
10.52 |
816,88 |
832,177 |
-15,2967 |
|
11.52 |
862,39 |
827,588 |
34,8023 |
|
12.52 |
839,67 |
838,028 |
1,64164 |
|
1.53 |
812,22 |
838,521 |
-26,3009 |
|
2.53 |
822,04 |
830,631 |
-8,5906 |
|
3.53 |
823,26 |
828,053 |
-4,79342 |
|
4.53 |
843,39 |
826,615 |
16,7746 |
|
5.53 |
865,42 |
831,648 |
33,7722 |
|
6.53 |
825,66 |
841,779 |
-16,1194 |
|
7.53 |
850,26 |
836,944 |
13,3164 |
|
8.53 |
828,34 |
840,939 |
-12,5985 |
|
9.53 |
783,02 |
837,159 |
-54,139 |
|
10.53 |
807,71 |
820,917 |
-13,2073 |
|
11.53 |
791,73 |
816,955 |
-25,2251 |
|
12.53 |
829,32 |
809,388 |
19,9324 |
|
1.54 |
863,65 |
815,367 |
48,2827 |
|
2.54 |
878,19 |
829,852 |
48,3379 |
|
3.54 |
894,68 |
844,353 |
50,3265 |
|
4.54 |
873,43 |
859,451 |
13,9786 |
|
5.54 |
841,42 |
863,645 |
-22,225 |
|
6.54 |
923,94 |
856,978 |
66,9625 |
|
7.54 |
919,01 |
877,066 |
41,9437 |
|
8.54 |
919,19 |
889,649 |
29,5406 |
|
9.54 |
881,18 |
898,512 |
-17,3316 |
|
10.54 |
911,06 |
893,312 |
17,7479 |
|
11.54 |
921,6 |
898,636 |
22,9635 |
|
12.54 |
1016,39 |
905,526 |
110,864 |
|
1.55 |
1055,37 |
938,785 |
116,585 |
|
2.55 |
1103,51 |
973,76 |
129,75 |
|
3.55 |
1112,47 |
1012,69 |
99,7847 |
|
4.55 |
1119,03 |
1042,62 |
76,4093 |
|
5.55 |
1113,04 |
1065,54 |
47,4965 |
|
6.55 |
1028,2 |
1079,79 |
-51,5924 |
|
7.55 |
1038,78 |
1064,31 |
-25,5347 |
|
8.55 |
1086,43 |
1056,65 |
29,7757 |
|
9.55 |
1105,96 |
1065,59 |
40,373 |
|
10.55 |
1125,8 |
1077,7 |
48,1011 |
|
11.55 |
1124,88 |
1092,13 |
32,7508 |
|
12.55 |
1162,68 |
1101,95 |
60,7255 |
|
1.56 |
1204,92 |
1120,17 |
84,7479 |
|
2.56 |
1232,24 |
1145,6 |
86,6435 |
|
3.56 |
1138,69 |
1171,59 |
-32,8995 |
|
4.56 |
1230,79 |
1161,72 |
69,0703 |
|
5.56 |
1271,72 |
1182,44 |
89,2792 |
|
6.56 |
1307,78 |
1209,22 |
98,5555 |
|
7.56 |
1328,18 |
1238,79 |
89,3888 |
|
8.56 |
1310,47 |
1265,61 |
44,8622 |
|
9.56 |
1326,15 |
1279,07 |
47,0835 |
|
10.56 |
1344,56 |
1293,19 |
51,3685 |
|
11.56 |
1348,83 |
1308,6 |
40,2279 |
|
12.56 |
1324,74 |
1320,67 |
4,06955 |
|
1.57 |
1347,72 |
1321,89 |
25,8287 |
|
2.57 |
1213,49 |
1329,64 |
-116,15 |
|
3.57 |
1145,62 |
1294,79 |
-149,175 |
|
4.57 |
1180,98 |
1250,04 |
-69,0625 |
|
5.57 |
1181,07 |
1229,32 |
-48,2537 |
|
6.57 |
1145,27 |
1214,85 |
-69,5776 |
|
7.57 |
995,52 |
1193,97 |
-198,454 |
|
8.57 |
957,73 |
1134,44 |
-176,708 |
|
9.57 |
1030,47 |
1081,43 |
-50,9556 |
|
10.57 |
987,7 |
1066,14 |
-78,4389 |
|
11.57 |
874,21 |
1042,61 |
-168,397 |
|
12.57 |
749,78 |
992,088 |
-242,308 |
|
1.58 |
815,25 |
919,396 |
-104,146 |
|
2.58 |
788,89 |
888,152 |
-99,262 |
|
3.58 |
688,15 |
858,373 |
-170,223 |
|
4.58 |
689,85 |
807,306 |
-117,456 |
|
5.58 |
758,83 |
772,069 |
-13,2395 |
|
6.58 |
813,63 |
768,098 |
45,5324 |
|
7.58 |
820,49 |
781,757 |
38,7327 |
|
8.58 |
906,61 |
793,377 |
113,233 |
|
9.58 |
902,04 |
827,347 |
74,693 |
|
10.58 |
941,57 |
849,755 |
91,8151 |
|
11.58 |
988,37 |
877,299 |
111,071 |
|
12.58 |
1024,29 |
910,621 |
113,669 |
|
1.59 |
1117,68 |
944,721 |
172,959 |
|
2.59 |
1125,11 |
996,609 |
128,501 |
|
3.59 |
1142,6 |
1035,16 |
107,441 |
|
4.59 |
1196,45 |
1067,39 |
129,058 |
|
5.59 |
1193,84 |
1106,11 |
87,7309 |
|
6.59 |
1163,26 |
1132,43 |
30,8317 |
|
7.59 |
1141,02 |
1141,68 |
-0,657837 |
|
8.59 |
1170,72 |
1141,48 |
29,2395 |
|
9.59 |
1132,32 |
1150,25 |
-17,9323 |
|
10.59 |
1143,91 |
1144,87 |
-0,962638 |
|
11.59 |
1120,08 |
1144,58 |
-24,5038 |
|
12.59 |
1128,26 |
1137,23 |
-8,97269 |
|
1.60 |
1207,35 |
1134,54 |
72,8091 |
|
2.60 |
1148,54 |
1156,38 |
-7,84362 |
|
3.60 |
1163,89 |
1154,03 |
9,85947 |
|
4.60 |
1166,96 |
1156,99 |
9,97163 |
|
5.60 |
1156,66 |
1159,98 |
-3,31986 |
|
6.60 |
1155,66 |
1158,98 |
-3,3239 |
|
7.60 |
1134,28 |
1157,99 |
-23,7067 |
|
8.60 |
1104,87 |
1150,87 |
-46,0047 |
|
9.60 |
1055,55 |
1137,07 |
-81,5233 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1112,62 |
969,251 |
1255,98 |
a=0.5
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple exponential smoothing with alpha = 0,5
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
57,5785 |
69,9626 |
MAE |
44,3481 |
69,9626 |
MAPE |
4,63073 |
6,62807 |
ME |
4,42624 |
-69,9626 |
MPE |
0,177374 |
-6,62807 |
Forecast Table for ConsGOODS
Model: Simple exponential smoothing with alpha = 0,5
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
842,233 |
-29,0631 |
|
2.50 |
877,02 |
827,702 |
49,3185 |
|
3.50 |
844,36 |
852,361 |
-8,00077 |
|
4.50 |
856,69 |
848,36 |
8,32961 |
|
5.50 |
924,97 |
852,525 |
72,4448 |
|
6.50 |
953,18 |
888,748 |
64,4324 |
|
7.50 |
892,74 |
920,964 |
-28,2238 |
|
8.50 |
874,46 |
906,852 |
-32,3919 |
|
9.50 |
771,4 |
890,656 |
-119,256 |
|
10.50 |
785,72 |
831,028 |
-45,308 |
|
11.50 |
829,36 |
808,374 |
20,986 |
|
12.50 |
865,08 |
818,867 |
46,213 |
|
1.51 |
892,15 |
841,973 |
50,1765 |
|
2.51 |
947,28 |
867,062 |
80,2183 |
|
3.51 |
948,6 |
907,171 |
41,4291 |
|
4.51 |
992,79 |
927,885 |
64,9046 |
|
5.51 |
1017,36 |
960,338 |
57,0223 |
|
6.51 |
997,49 |
988,849 |
8,64114 |
|
7.51 |
911,97 |
993,169 |
-81,1994 |
|
8.51 |
837,21 |
952,57 |
-115,36 |
|
9.51 |
857,42 |
894,89 |
-37,4699 |
|
10.51 |
798,01 |
876,155 |
-78,1449 |
|
11.51 |
859,33 |
837,082 |
22,2475 |
|
12.51 |
849,27 |
848,206 |
1,06377 |
|
1.52 |
838,65 |
848,738 |
-10,0881 |
|
2.52 |
824,31 |
843,694 |
-19,3841 |
|
3.52 |
820,56 |
834,002 |
-13,442 |
|
4.52 |
821,28 |
827,281 |
-6,00101 |
|
5.52 |
812,44 |
824,281 |
-11,8405 |
|
6.52 |
786,55 |
818,36 |
-31,8103 |
|
7.52 |
804,84 |
802,455 |
2,38487 |
|
8.52 |
834,95 |
803,648 |
31,3024 |
|
9.52 |
863,61 |
819,299 |
44,3112 |
|
10.52 |
816,88 |
841,454 |
-24,5744 |
|
11.52 |
862,39 |
829,167 |
33,2228 |
|
12.52 |
839,67 |
845,779 |
-6,1086 |
|
1.53 |
812,22 |
842,724 |
-30,5043 |
|
2.53 |
822,04 |
827,472 |
-5,43215 |
|
3.53 |
823,26 |
824,756 |
-1,49607 |
|
4.53 |
843,39 |
824,008 |
19,382 |
|
5.53 |
865,42 |
833,699 |
31,721 |
|
6.53 |
825,66 |
849,56 |
-23,8995 |
|
7.53 |
850,26 |
837,61 |
12,6502 |
|
8.53 |
828,34 |
843,935 |
-15,5949 |
|
9.53 |
783,02 |
836,137 |
-53,1174 |
|
10.53 |
807,71 |
809,579 |
-1,86872 |
|
11.53 |
791,73 |
808,644 |
-16,9144 |
|
12.53 |
829,32 |
800,187 |
29,1328 |
|
1.54 |
863,65 |
814,754 |
48,8964 |
|
2.54 |
878,19 |
839,202 |
38,9882 |
|
3.54 |
894,68 |
858,696 |
35,9841 |
|
4.54 |
873,43 |
876,688 |
-3,25795 |
|
5.54 |
841,42 |
875,059 |
-33,639 |
|
6.54 |
923,94 |
858,239 |
65,7005 |
|
7.54 |
919,01 |
891,09 |
27,9203 |
|
8.54 |
919,19 |
905,05 |
14,1401 |
|
9.54 |
881,18 |
912,12 |
-30,9399 |
|
10.54 |
911,06 |
896,65 |
14,41 |
|
11.54 |
921,6 |
903,855 |
17,745 |
|
12.54 |
1016,39 |
912,727 |
103,663 |
|
1.55 |
1055,37 |
964,559 |
90,8113 |
|
2.55 |
1103,51 |
1009,96 |
93,5456 |
|
3.55 |
1112,47 |
1056,74 |
55,7328 |
|
4.55 |
1119,03 |
1084,6 |
34,4264 |
|
5.55 |
1113,04 |
1101,82 |
11,2232 |
|
6.55 |
1028,2 |
1107,43 |
-79,2284 |
|
7.55 |
1038,78 |
1067,81 |
-29,0342 |
|
8.55 |
1086,43 |
1053,3 |
33,1329 |
|
9.55 |
1105,96 |
1069,86 |
36,0965 |
|
10.55 |
1125,8 |
1087,91 |
37,8882 |
|
11.55 |
1124,88 |
1106,86 |
18,0241 |
|
12.55 |
1162,68 |
1115,87 |
46,8121 |
|
1.56 |
1204,92 |
1139,27 |
65,646 |
|
2.56 |
1232,24 |
1172,1 |
60,143 |
|
3.56 |
1138,69 |
1202,17 |
-63,4785 |
|
4.56 |
1230,79 |
1170,43 |
60,3608 |
|
5.56 |
1271,72 |
1200,61 |
71,1104 |
|
6.56 |
1307,78 |
1236,16 |
71,6152 |
|
7.56 |
1328,18 |
1271,97 |
56,2076 |
|
8.56 |
1310,47 |
1300,08 |
10,3938 |
|
9.56 |
1326,15 |
1305,27 |
20,8769 |
|
10.56 |
1344,56 |
1315,71 |
28,8484 |
|
11.56 |
1348,83 |
1330,14 |
18,6942 |
|
12.56 |
1324,74 |
1339,48 |
-14,7429 |
|
1.57 |
1347,72 |
1332,11 |
15,6086 |
|
2.57 |
1213,49 |
1339,92 |
-126,426 |
|
3.57 |
1145,62 |
1276,7 |
-131,083 |
|
4.57 |
1180,98 |
1211,16 |
-30,1814 |
|
5.57 |
1181,07 |
1196,07 |
-15,0007 |
|
6.57 |
1145,27 |
1188,57 |
-43,3004 |
|
7.57 |
995,52 |
1166,92 |
-171,4 |
|
8.57 |
957,73 |
1081,22 |
-123,49 |
|
9.57 |
1030,47 |
1019,48 |
10,995 |
|
10.57 |
987,7 |
1024,97 |
-37,2725 |
|
11.57 |
874,21 |
1006,34 |
-132,126 |
|
12.57 |
749,78 |
940,273 |
-190,493 |
|
1.58 |
815,25 |
845,027 |
-29,7766 |
|
2.58 |
788,89 |
830,138 |
-41,2483 |
|
3.58 |
688,15 |
809,514 |
-121,364 |
|
4.58 |
689,85 |
748,832 |
-58,9821 |
|
5.58 |
758,83 |
719,341 |
39,489 |
|
6.58 |
813,63 |
739,086 |
74,5445 |
|
7.58 |
820,49 |
776,358 |
44,1322 |
|
8.58 |
906,61 |
798,424 |
108,186 |
|
9.58 |
902,04 |
852,517 |
49,5231 |
|
10.58 |
941,57 |
877,278 |
64,2915 |
|
11.58 |
988,37 |
909,424 |
78,9458 |
|
12.58 |
1024,29 |
948,897 |
75,3929 |
|
1.59 |
1117,68 |
986,594 |
131,086 |
|
2.59 |
1125,11 |
1052,14 |
72,9732 |
|
3.59 |
1142,6 |
1088,62 |
53,9766 |
|
4.59 |
1196,45 |
1115,61 |
80,8383 |
|
5.59 |
1193,84 |
1156,03 |
37,8092 |
|
6.59 |
1163,26 |
1174,94 |
-11,6754 |
|
7.59 |
1141,02 |
1169,1 |
-28,0777 |
|
8.59 |
1170,72 |
1155,06 |
15,6611 |
|
9.59 |
1132,32 |
1162,89 |
-30,5694 |
|
10.59 |
1143,91 |
1147,6 |
-3,69471 |
|
11.59 |
1120,08 |
1145,76 |
-25,6774 |
|
12.59 |
1128,26 |
1132,92 |
-4,65868 |
|
1.60 |
1207,35 |
1130,59 |
76,7607 |
|
2.60 |
1148,54 |
1168,97 |
-20,4297 |
|
3.60 |
1163,89 |
1158,75 |
5,13517 |
|
4.60 |
1166,96 |
1161,32 |
5,63758 |
|
5.60 |
1156,66 |
1164,14 |
-7,48121 |
|
6.60 |
1155,66 |
1160,4 |
-4,7406 |
|
7.60 |
1134,28 |
1158,03 |
-23,7503 |
|
8.60 |
1104,87 |
1146,16 |
-41,2852 |
|
9.60 |
1055,55 |
1125,51 |
-69,9626 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1090,53 |
977,679 |
1203,38 |
a=0.8
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple exponential smoothing with alpha = 0,8
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
48,9911 |
56,0803 |
MAE |
37,3554 |
56,0803 |
MAPE |
3,92028 |
5,3129 |
ME |
2,80063 |
-56,0803 |
MPE |
0,129475 |
-5,3129 |
Forecast Table for ConsGOODS
Model: Simple exponential smoothing with alpha = 0,8
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
824,846 |
-11,6762 |
|
2.50 |
877,02 |
815,505 |
61,5148 |
|
3.50 |
844,36 |
864,717 |
-20,357 |
|
4.50 |
856,69 |
848,431 |
8,25859 |
|
5.50 |
924,97 |
855,038 |
69,9317 |
|
6.50 |
953,18 |
910,984 |
42,1963 |
|
7.50 |
892,74 |
944,741 |
-52,0007 |
|
8.50 |
874,46 |
903,14 |
-28,6801 |
|
9.50 |
771,4 |
880,196 |
-108,796 |
|
10.50 |
785,72 |
793,159 |
-7,43921 |
|
11.50 |
829,36 |
787,208 |
42,1522 |
|
12.50 |
865,08 |
820,93 |
44,1504 |
|
1.51 |
892,15 |
856,25 |
35,9001 |
|
2.51 |
947,28 |
884,97 |
62,31 |
|
3.51 |
948,6 |
934,818 |
13,782 |
|
4.51 |
992,79 |
945,844 |
46,9464 |
|
5.51 |
1017,36 |
983,401 |
33,9593 |
|
6.51 |
997,49 |
1010,57 |
-13,0781 |
|
7.51 |
911,97 |
1000,11 |
-88,1356 |
|
8.51 |
837,21 |
929,597 |
-92,3871 |
|
9.51 |
857,42 |
855,687 |
1,73257 |
|
10.51 |
798,01 |
857,073 |
-59,0635 |
|
11.51 |
859,33 |
809,823 |
49,5073 |
|
12.51 |
849,27 |
849,429 |
-0,158539 |
|
1.52 |
838,65 |
849,302 |
-10,6517 |
|
2.52 |
824,31 |
840,78 |
-16,4703 |
|
3.52 |
820,56 |
827,604 |
-7,04407 |
|
4.52 |
821,28 |
821,969 |
-0,688814 |
|
5.52 |
812,44 |
821,418 |
-8,97776 |
|
6.52 |
786,55 |
814,236 |
-27,6856 |
|
7.52 |
804,84 |
792,087 |
12,7529 |
|
8.52 |
834,95 |
802,289 |
32,6606 |
|
9.52 |
863,61 |
828,418 |
35,1921 |
|
10.52 |
816,88 |
856,572 |
-39,6916 |
|
11.52 |
862,39 |
824,818 |
37,5717 |
|
12.52 |
839,67 |
854,876 |
-15,2057 |
|
1.53 |
812,22 |
842,711 |
-30,4911 |
|
2.53 |
822,04 |
818,318 |
3,72177 |
|
3.53 |
823,26 |
821,296 |
1,96435 |
|
4.53 |
843,39 |
822,867 |
20,5229 |
|
5.53 |
865,42 |
839,285 |
26,1346 |
|
6.53 |
825,66 |
860,193 |
-34,5331 |
|
7.53 |
850,26 |
832,567 |
17,6934 |
|
8.53 |
828,34 |
846,721 |
-18,3813 |
|
9.53 |
783,02 |
832,016 |
-48,9963 |
|
10.53 |
807,71 |
792,819 |
14,8907 |
|
11.53 |
791,73 |
804,732 |
-13,0019 |
|
12.53 |
829,32 |
794,33 |
34,9896 |
|
1.54 |
863,65 |
822,322 |
41,3279 |
|
2.54 |
878,19 |
855,384 |
22,8056 |
|
3.54 |
894,68 |
873,629 |
21,0511 |
|
4.54 |
873,43 |
890,47 |
-17,0398 |
|
5.54 |
841,42 |
876,838 |
-35,418 |
|
6.54 |
923,94 |
848,504 |
75,4364 |
|
7.54 |
919,01 |
908,853 |
10,1573 |
|
8.54 |
919,19 |
916,979 |
2,21146 |
|
9.54 |
881,18 |
918,748 |
-37,5677 |
|
10.54 |
911,06 |
888,694 |
22,3665 |
|
11.54 |
921,6 |
906,587 |
15,0133 |
|
12.54 |
1016,39 |
918,597 |
97,7927 |
|
1.55 |
1055,37 |
996,831 |
58,5385 |
|
2.55 |
1103,51 |
1043,66 |
59,8477 |
|
3.55 |
1112,47 |
1091,54 |
20,9295 |
|
4.55 |
1119,03 |
1108,28 |
10,7459 |
|
5.55 |
1113,04 |
1116,88 |
-3,84082 |
|
6.55 |
1028,2 |
1113,81 |
-85,6082 |
|
7.55 |
1038,78 |
1045,32 |
-6,54163 |
|
8.55 |
1086,43 |
1040,09 |
46,3417 |
|
9.55 |
1105,96 |
1077,16 |
28,7983 |
|
10.55 |
1125,8 |
1100,2 |
25,5997 |
|
11.55 |
1124,88 |
1120,68 |
4,19993 |
|
12.55 |
1162,68 |
1124,04 |
38,64 |
|
1.56 |
1204,92 |
1154,95 |
49,968 |
|
2.56 |
1232,24 |
1194,93 |
37,3136 |
|
3.56 |
1138,69 |
1224,78 |
-86,0873 |
|
4.56 |
1230,79 |
1155,91 |
74,8825 |
|
5.56 |
1271,72 |
1215,81 |
55,9065 |
|
6.56 |
1307,78 |
1260,54 |
47,2413 |
|
7.56 |
1328,18 |
1298,33 |
29,8483 |
|
8.56 |
1310,47 |
1322,21 |
-11,7403 |
|
9.56 |
1326,15 |
1312,82 |
13,3319 |
|
10.56 |
1344,56 |
1323,48 |
21,0764 |
|
11.56 |
1348,83 |
1340,34 |
8,48528 |
|
12.56 |
1324,74 |
1347,13 |
-22,3929 |
|
1.57 |
1347,72 |
1329,22 |
18,5014 |
|
2.57 |
1213,49 |
1344,02 |
-130,53 |
|
3.57 |
1145,62 |
1239,6 |
-93,9759 |
|
4.57 |
1180,98 |
1164,42 |
16,5648 |
|
5.57 |
1181,07 |
1177,67 |
3,40296 |
|
6.57 |
1145,27 |
1180,39 |
-35,1194 |
|
7.57 |
995,52 |
1152,29 |
-156,774 |
|
8.57 |
957,73 |
1026,87 |
-69,1448 |
|
9.57 |
1030,47 |
971,559 |
58,911 |
|
10.57 |
987,7 |
1018,69 |
-30,9878 |
|
11.57 |
874,21 |
993,898 |
-119,688 |
|
12.57 |
749,78 |
898,148 |
-148,368 |
|
1.58 |
815,25 |
779,454 |
35,7965 |
|
2.58 |
788,89 |
808,091 |
-19,2007 |
|
3.58 |
688,15 |
792,73 |
-104,58 |
|
4.58 |
689,85 |
709,066 |
-19,216 |
|
5.58 |
758,83 |
693,693 |
65,1368 |
|
6.58 |
813,63 |
745,803 |
67,8274 |
|
7.58 |
820,49 |
800,065 |
20,4255 |
|
8.58 |
906,61 |
816,405 |
90,2051 |
|
9.58 |
902,04 |
888,569 |
13,471 |
|
10.58 |
941,57 |
899,346 |
42,2242 |
|
11.58 |
988,37 |
933,125 |
55,2448 |
|
12.58 |
1024,29 |
977,321 |
46,969 |
|
1.59 |
1117,68 |
1014,9 |
102,784 |
|
2.59 |
1125,11 |
1097,12 |
27,9868 |
|
3.59 |
1142,6 |
1119,51 |
23,0874 |
|
4.59 |
1196,45 |
1137,98 |
58,4675 |
|
5.59 |
1193,84 |
1184,76 |
9,08349 |
|
6.59 |
1163,26 |
1192,02 |
-28,7633 |
|
7.59 |
1141,02 |
1169,01 |
-27,9927 |
|
8.59 |
1170,72 |
1146,62 |
24,1015 |
|
9.59 |
1132,32 |
1165,9 |
-33,5797 |
|
10.59 |
1143,91 |
1139,04 |
4,87406 |
|
11.59 |
1120,08 |
1142,94 |
-22,8552 |
|
12.59 |
1128,26 |
1124,65 |
3,60896 |
|
1.60 |
1207,35 |
1127,54 |
79,8118 |
|
2.60 |
1148,54 |
1191,39 |
-42,8476 |
|
3.60 |
1163,89 |
1157,11 |
6,78047 |
|
4.60 |
1166,96 |
1162,53 |
4,42609 |
|
5.60 |
1156,66 |
1166,07 |
-9,41478 |
|
6.60 |
1155,66 |
1158,54 |
-2,88296 |
|
7.60 |
1134,28 |
1156,24 |
-21,9566 |
|
8.60 |
1104,87 |
1138,67 |
-33,8013 |
|
9.60 |
1055,55 |
1111,63 |
-56,0803 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1066,77 |
970,745 |
1162,79 |
a=0.9
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple exponential smoothing with alpha = 0,9
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
47,7633 |
52,4768 |
MAE |
36,3298 |
52,4768 |
MAPE |
3,81552 |
4,97151 |
ME |
2,50676 |
-52,4768 |
MPE |
0,120788 |
-4,97151 |
Forecast Table for ConsGOODS
Model: Simple exponential smoothing with alpha = 0,9
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
819,248 |
-6,07778 |
|
2.50 |
877,02 |
813,778 |
63,2422 |
|
3.50 |
844,36 |
870,696 |
-26,3358 |
|
4.50 |
856,69 |
846,994 |
9,69642 |
|
5.50 |
924,97 |
855,72 |
69,2496 |
|
6.50 |
953,18 |
918,045 |
35,135 |
|
7.50 |
892,74 |
949,667 |
-56,9265 |
|
8.50 |
874,46 |
898,433 |
-23,9727 |
|
9.50 |
771,4 |
876,857 |
-105,457 |
|
10.50 |
785,72 |
781,946 |
3,77427 |
|
11.50 |
829,36 |
785,343 |
44,0174 |
|
12.50 |
865,08 |
824,958 |
40,1217 |
|
1.51 |
892,15 |
861,068 |
31,0822 |
|
2.51 |
947,28 |
889,042 |
58,2382 |
|
3.51 |
948,6 |
941,456 |
7,14382 |
|
4.51 |
992,79 |
947,886 |
44,9044 |
|
5.51 |
1017,36 |
988,3 |
29,0604 |
|
6.51 |
997,49 |
1014,45 |
-16,964 |
|
7.51 |
911,97 |
999,186 |
-87,2164 |
|
8.51 |
837,21 |
920,692 |
-83,4816 |
|
9.51 |
857,42 |
845,558 |
11,8618 |
|
10.51 |
798,01 |
856,234 |
-58,2238 |
|
11.51 |
859,33 |
803,832 |
55,4976 |
|
12.51 |
849,27 |
853,78 |
-4,51024 |
|
1.52 |
838,65 |
849,721 |
-11,071 |
|
2.52 |
824,31 |
839,757 |
-15,4471 |
|
3.52 |
820,56 |
825,855 |
-5,29471 |
|
4.52 |
821,28 |
821,089 |
0,190529 |
|
5.52 |
812,44 |
821,261 |
-8,82095 |
|
6.52 |
786,55 |
813,322 |
-26,7721 |
|
7.52 |
804,84 |
789,227 |
15,6128 |
|
8.52 |
834,95 |
803,279 |
31,6713 |
|
9.52 |
863,61 |
831,783 |
31,8271 |
|
10.52 |
816,88 |
860,427 |
-43,5473 |
|
11.52 |
862,39 |
821,235 |
41,1553 |
|
12.52 |
839,67 |
858,274 |
-18,6045 |
|
1.53 |
812,22 |
841,53 |
-29,3104 |
|
2.53 |
822,04 |
815,151 |
6,88896 |
|
3.53 |
823,26 |
821,351 |
1,9089 |
|
4.53 |
843,39 |
823,069 |
20,3209 |
|
5.53 |
865,42 |
841,358 |
24,0621 |
|
6.53 |
825,66 |
863,014 |
-37,3538 |
|
7.53 |
850,26 |
829,395 |
20,8646 |
|
8.53 |
828,34 |
848,174 |
-19,8335 |
|
9.53 |
783,02 |
830,323 |
-47,3034 |
|
10.53 |
807,71 |
787,75 |
19,9597 |
|
11.53 |
791,73 |
805,714 |
-13,984 |
|
12.53 |
829,32 |
793,128 |
36,1916 |
|
1.54 |
863,65 |
825,701 |
37,9492 |
|
2.54 |
878,19 |
859,855 |
18,3349 |
|
3.54 |
894,68 |
876,357 |
18,3235 |
|
4.54 |
873,43 |
892,848 |
-19,4177 |
|
5.54 |
841,42 |
875,372 |
-33,9518 |
|
6.54 |
923,94 |
844,815 |
79,1248 |
|
7.54 |
919,01 |
916,028 |
2,98248 |
|
8.54 |
919,19 |
918,712 |
0,478248 |
|
9.54 |
881,18 |
919,142 |
-37,9622 |
|
10.54 |
911,06 |
884,976 |
26,0838 |
|
11.54 |
921,6 |
908,452 |
13,1484 |
|
12.54 |
1016,39 |
920,285 |
96,1048 |
|
1.55 |
1055,37 |
1006,78 |
48,5905 |
|
2.55 |
1103,51 |
1050,51 |
52,999 |
|
3.55 |
1112,47 |
1098,21 |
14,2599 |
|
4.55 |
1119,03 |
1111,04 |
7,98599 |
|
5.55 |
1113,04 |
1118,23 |
-5,1914 |
|
6.55 |
1028,2 |
1113,56 |
-85,3591 |
|
7.55 |
1038,78 |
1036,74 |
2,04409 |
|
8.55 |
1086,43 |
1038,58 |
47,8544 |
|
9.55 |
1105,96 |
1081,64 |
24,3154 |
|
10.55 |
1125,8 |
1103,53 |
22,2715 |
|
11.55 |
1124,88 |
1123,57 |
1,30715 |
|
12.55 |
1162,68 |
1124,75 |
37,9307 |
|
1.56 |
1204,92 |
1158,89 |
46,0331 |
|
2.56 |
1232,24 |
1200,32 |
31,9233 |
|
3.56 |
1138,69 |
1229,05 |
-90,3577 |
|
4.56 |
1230,79 |
1147,73 |
83,0642 |
|
5.56 |
1271,72 |
1222,48 |
49,2364 |
|
6.56 |
1307,78 |
1266,8 |
40,9836 |
|
7.56 |
1328,18 |
1303,68 |
24,4984 |
|
8.56 |
1310,47 |
1325,73 |
-15,2602 |
|
9.56 |
1326,15 |
1312,0 |
14,154 |
|
10.56 |
1344,56 |
1324,73 |
19,8254 |
|
11.56 |
1348,83 |
1342,58 |
6,25254 |
|
12.56 |
1324,74 |
1348,2 |
-23,4647 |
|
1.57 |
1347,72 |
1327,09 |
20,6335 |
|
2.57 |
1213,49 |
1345,66 |
-132,167 |
|
3.57 |
1145,62 |
1226,71 |
-81,0867 |
|
4.57 |
1180,98 |
1153,73 |
27,2513 |
|
5.57 |
1181,07 |
1178,25 |
2,81513 |
|
6.57 |
1145,27 |
1180,79 |
-35,5185 |
|
7.57 |
995,52 |
1148,82 |
-153,302 |
|
8.57 |
957,73 |
1010,85 |
-53,1202 |
|
9.57 |
1030,47 |
963,042 |
67,428 |
|
10.57 |
987,7 |
1023,73 |
-36,0272 |
|
11.57 |
874,21 |
991,303 |
-117,093 |
|
12.57 |
749,78 |
885,919 |
-136,139 |
|
1.58 |
815,25 |
763,394 |
51,8561 |
|
2.58 |
788,89 |
810,064 |
-21,1744 |
|
3.58 |
688,15 |
791,007 |
-102,857 |
|
4.58 |
689,85 |
698,436 |
-8,58574 |
|
5.58 |
758,83 |
690,709 |
68,1214 |
|
6.58 |
813,63 |
752,018 |
61,6121 |
|
7.58 |
820,49 |
807,469 |
13,0212 |
|
8.58 |
906,61 |
819,188 |
87,4221 |
|
9.58 |
902,04 |
897,868 |
4,17221 |
|
10.58 |
941,57 |
901,623 |
39,9472 |
|
11.58 |
988,37 |
937,575 |
50,7947 |
|
12.58 |
1024,29 |
983,291 |
40,9995 |
|
1.59 |
1117,68 |
1020,19 |
97,4899 |
|
2.59 |
1125,11 |
1107,93 |
17,179 |
|
3.59 |
1142,6 |
1123,39 |
19,2079 |
|
4.59 |
1196,45 |
1140,68 |
55,7708 |
|
5.59 |
1193,84 |
1190,87 |
2,96708 |
|
6.59 |
1163,26 |
1193,54 |
-30,2833 |
|
7.59 |
1141,02 |
1166,29 |
-25,2683 |
|
8.59 |
1170,72 |
1143,55 |
27,1732 |
|
9.59 |
1132,32 |
1168,0 |
-35,6827 |
|
10.59 |
1143,91 |
1135,89 |
8,02173 |
|
11.59 |
1120,08 |
1143,11 |
-23,0278 |
|
12.59 |
1128,26 |
1122,38 |
5,87722 |
|
1.60 |
1207,35 |
1127,67 |
79,6777 |
|
2.60 |
1148,54 |
1199,38 |
-50,8422 |
|
3.60 |
1163,89 |
1153,62 |
10,2658 |
|
4.60 |
1166,96 |
1162,86 |
4,09658 |
|
5.60 |
1156,66 |
1166,55 |
-9,89034 |
|
6.60 |
1155,66 |
1157,65 |
-1,98903 |
|
7.60 |
1134,28 |
1155,86 |
-21,5789 |
|
8.60 |
1104,87 |
1136,44 |
-31,5679 |
|
9.60 |
1055,55 |
1108,03 |
-52,4768 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1060,8 |
967,183 |
1154,41 |
a=0.95
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Simple exponential smoothing with alpha = 0,95
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
47,3383 |
50,8441 |
MAE |
35,9752 |
50,8441 |
MAPE |
3,78028 |
4,81684 |
ME |
2,38578 |
-50,8441 |
MPE |
0,117517 |
-4,81684 |
Forecast Table for ConsGOODS
Model: Simple exponential smoothing with alpha = 0,95
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
816,283 |
-3,11283 |
|
2.50 |
877,02 |
813,326 |
63,6944 |
|
3.50 |
844,36 |
873,835 |
-29,4753 |
|
4.50 |
856,69 |
845,834 |
10,8562 |
|
5.50 |
924,97 |
856,147 |
68,8228 |
|
6.50 |
953,18 |
921,529 |
31,6511 |
|
7.50 |
892,74 |
951,597 |
-58,8574 |
|
8.50 |
874,46 |
895,683 |
-21,2229 |
|
9.50 |
771,4 |
875,521 |
-104,121 |
|
10.50 |
785,72 |
776,606 |
9,11394 |
|
11.50 |
829,36 |
785,264 |
44,0957 |
|
12.50 |
865,08 |
827,155 |
37,9248 |
|
1.51 |
892,15 |
863,184 |
28,9662 |
|
2.51 |
947,28 |
890,702 |
56,5783 |
|
3.51 |
948,6 |
944,451 |
4,14892 |
|
4.51 |
992,79 |
948,393 |
44,3974 |
|
5.51 |
1017,36 |
990,57 |
26,7899 |
|
6.51 |
997,49 |
1016,02 |
-18,5305 |
|
7.51 |
911,97 |
998,417 |
-86,4465 |
|
8.51 |
837,21 |
916,292 |
-79,0823 |
|
9.51 |
857,42 |
841,164 |
16,2559 |
|
10.51 |
798,01 |
856,607 |
-58,5972 |
|
11.51 |
859,33 |
800,94 |
58,3901 |
|
12.51 |
849,27 |
856,41 |
-7,14049 |
|
1.52 |
838,65 |
849,627 |
-10,977 |
|
2.52 |
824,31 |
839,199 |
-14,8889 |
|
3.52 |
820,56 |
825,054 |
-4,49444 |
|
4.52 |
821,28 |
820,785 |
0,495278 |
|
5.52 |
812,44 |
821,255 |
-8,81524 |
|
6.52 |
786,55 |
812,881 |
-26,3308 |
|
7.52 |
804,84 |
787,867 |
16,9735 |
|
8.52 |
834,95 |
803,991 |
30,9587 |
|
9.52 |
863,61 |
833,402 |
30,2079 |
|
10.52 |
816,88 |
862,1 |
-45,2196 |
|
11.52 |
862,39 |
819,141 |
43,249 |
|
12.52 |
839,67 |
860,228 |
-20,5575 |
|
1.53 |
812,22 |
840,698 |
-28,4779 |
|
2.53 |
822,04 |
813,644 |
8,39611 |
|
3.53 |
823,26 |
821,62 |
1,63981 |
|
4.53 |
843,39 |
823,178 |
20,212 |
|
5.53 |
865,42 |
842,379 |
23,0406 |
|
6.53 |
825,66 |
864,268 |
-38,608 |
|
7.53 |
850,26 |
827,59 |
22,6696 |
|
8.53 |
828,34 |
849,127 |
-20,7865 |
|
9.53 |
783,02 |
829,379 |
-46,3593 |
|
10.53 |
807,71 |
785,338 |
22,372 |
|
11.53 |
791,73 |
806,591 |
-14,8614 |
|
12.53 |
829,32 |
792,473 |
36,8469 |
|
1.54 |
863,65 |
827,478 |
36,1723 |
|
2.54 |
878,19 |
861,841 |
16,3486 |
|
3.54 |
894,68 |
877,373 |
17,3074 |
|
4.54 |
873,43 |
893,815 |
-20,3846 |
|
5.54 |
841,42 |
874,449 |
-33,0292 |
|
6.54 |
923,94 |
843,071 |
80,8685 |
|
7.54 |
919,01 |
919,897 |
-0,886573 |
|
8.54 |
919,19 |
919,054 |
0,135671 |
|
9.54 |
881,18 |
919,183 |
-38,0032 |
|
10.54 |
911,06 |
883,08 |
27,9798 |
|
11.54 |
921,6 |
909,661 |
11,939 |
|
12.54 |
1016,39 |
921,003 |
95,3869 |
|
1.55 |
1055,37 |
1011,62 |
43,7493 |
|
2.55 |
1103,51 |
1053,18 |
50,3275 |
|
3.55 |
1112,47 |
1100,99 |
11,4764 |
|
4.55 |
1119,03 |
1111,9 |
7,13382 |
|
5.55 |
1113,04 |
1118,67 |
-5,63331 |
|
6.55 |
1028,2 |
1113,32 |
-85,1217 |
|
7.55 |
1038,78 |
1032,46 |
6,32392 |
|
8.55 |
1086,43 |
1038,46 |
47,9662 |
|
9.55 |
1105,96 |
1084,03 |
21,9283 |
|
10.55 |
1125,8 |
1104,86 |
20,9364 |
|
11.55 |
1124,88 |
1124,75 |
0,126821 |
|
12.55 |
1162,68 |
1124,87 |
37,8063 |
|
1.56 |
1204,92 |
1160,79 |
44,1303 |
|
2.56 |
1232,24 |
1202,71 |
29,5265 |
|
3.56 |
1138,69 |
1230,76 |
-92,0737 |
|
4.56 |
1230,79 |
1143,29 |
87,4963 |
|
5.56 |
1271,72 |
1226,42 |
45,3048 |
|
6.56 |
1307,78 |
1269,45 |
38,3252 |
|
7.56 |
1328,18 |
1305,86 |
22,3163 |
|
8.56 |
1310,47 |
1327,06 |
-16,5942 |
|
9.56 |
1326,15 |
1311,3 |
14,8503 |
|
10.56 |
1344,56 |
1325,41 |
19,1525 |
|
11.56 |
1348,83 |
1343,6 |
5,22763 |
|
12.56 |
1324,74 |
1348,57 |
-23,8286 |
|
1.57 |
1347,72 |
1325,93 |
21,7886 |
|
2.57 |
1213,49 |
1346,63 |
-133,141 |
|
3.57 |
1145,62 |
1220,15 |
-74,527 |
|
4.57 |
1180,98 |
1149,35 |
31,6336 |
|
5.57 |
1181,07 |
1179,4 |
1,67168 |
|
6.57 |
1145,27 |
1180,99 |
-35,7164 |
|
7.57 |
995,52 |
1147,06 |
-151,536 |
|
8.57 |
957,73 |
1003,1 |
-45,3668 |
|
9.57 |
1030,47 |
959,998 |
70,4717 |
|
10.57 |
987,7 |
1026,95 |
-39,2464 |
|
11.57 |
874,21 |
989,662 |
-115,452 |
|
12.57 |
749,78 |
879,983 |
-130,203 |
|
1.58 |
815,25 |
756,29 |
58,9599 |
|
2.58 |
788,89 |
812,302 |
-23,412 |
|
3.58 |
688,15 |
790,061 |
-101,911 |
|
4.58 |
689,85 |
693,246 |
-3,39553 |
|
5.58 |
758,83 |
690,02 |
68,8102 |
|
6.58 |
813,63 |
755,389 |
58,2405 |
|
7.58 |
820,49 |
810,718 |
9,77203 |
|
8.58 |
906,61 |
820,001 |
86,6086 |
|
9.58 |
902,04 |
902,28 |
-0,23957 |
|
10.58 |
941,57 |
902,052 |
39,518 |
|
11.58 |
988,37 |
939,594 |
48,7759 |
|
12.58 |
1024,29 |
985,931 |
38,3588 |
|
1.59 |
1117,68 |
1022,37 |
95,3079 |
|
2.59 |
1125,11 |
1112,91 |
12,1954 |
|
3.59 |
1142,6 |
1124,5 |
18,0998 |
|
4.59 |
1196,45 |
1141,7 |
54,755 |
|
5.59 |
1193,84 |
1193,71 |
0,127749 |
|
6.59 |
1163,26 |
1193,83 |
-30,5736 |
|
7.59 |
1141,02 |
1164,79 |
-23,7687 |
|
8.59 |
1170,72 |
1142,21 |
28,5116 |
|
9.59 |
1132,32 |
1169,29 |
-36,9744 |
|
10.59 |
1143,91 |
1134,17 |
9,74128 |
|
11.59 |
1120,08 |
1143,42 |
-23,3429 |
|
12.59 |
1128,26 |
1121,25 |
7,01285 |
|
1.60 |
1207,35 |
1127,91 |
79,4406 |
|
2.60 |
1148,54 |
1203,38 |
-54,838 |
|
3.60 |
1163,89 |
1151,28 |
12,6081 |
|
4.60 |
1166,96 |
1163,26 |
3,70041 |
|
5.60 |
1156,66 |
1166,77 |
-10,115 |
|
6.60 |
1155,66 |
1157,17 |
-1,50575 |
|
7.60 |
1134,28 |
1155,74 |
-21,4553 |
|
8.60 |
1104,87 |
1135,35 |
-30,4828 |
|
9.60 |
1055,55 |
1106,39 |
-50,8441 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1058,09 |
965,311 |
1150,87 |
Приложение 5
Построение модели линейного экспоненциального сглаживания Брауна
a=0.1
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1,0
Sampling interval = 1,0
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,1
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
99,2016 |
112,145 |
MAE |
72,174 |
112,145 |
MAPE |
7,47158 |
10,6244 |
ME |
3,96315 |
-112,145 |
MPE |
-0,134772 |
-10,6244 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,1
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
865,793 |
-52,6235 |
|
2.50 |
877,02 |
854,771 |
22,2488 |
|
3.50 |
844,36 |
858,197 |
-13,8371 |
|
4.50 |
856,69 |
854,628 |
2,06165 |
|
5.50 |
924,97 |
854,101 |
70,869 |
|
6.50 |
953,18 |
867,356 |
85,8243 |
|
7.50 |
892,74 |
884,31 |
8,42987 |
|
8.50 |
874,46 |
886,644 |
-12,1839 |
|
9.50 |
771,4 |
884,939 |
-113,539 |
|
10.50 |
785,72 |
862,842 |
-77,1217 |
|
11.50 |
829,36 |
846,892 |
-17,5323 |
|
12.50 |
865,08 |
842,09 |
22,9905 |
|
1.51 |
892,15 |
845,216 |
46,934 |
|
2.51 |
947,28 |
853,361 |
93,919 |
|
3.51 |
948,6 |
871,372 |
77,2276 |
|
4.51 |
992,79 |
886,985 |
105,805 |
|
5.51 |
1017,36 |
909,085 |
108,275 |
|
6.51 |
997,49 |
932,737 |
64,753 |
|
7.51 |
911,97 |
948,767 |
-36,7975 |
|
8.51 |
837,21 |
945,135 |
-107,925 |
|
9.51 |
857,42 |
926,91 |
-69,4898 |
|
10.51 |
798,01 |
915,292 |
-117,282 |
|
11.51 |
859,33 |
893,421 |
-34,0909 |
|
12.51 |
849,27 |
887,015 |
-37,7452 |
|
1.52 |
838,65 |
879,538 |
-40,8877 |
|
2.52 |
824,31 |
871,054 |
-46,7442 |
|
3.52 |
820,56 |
860,991 |
-40,4306 |
|
4.52 |
821,28 |
851,722 |
-30,4423 |
|
5.52 |
812,44 |
844,047 |
-31,6073 |
|
6.52 |
786,55 |
835,835 |
-49,2849 |
|
7.52 |
804,84 |
823,771 |
-18,9309 |
|
8.52 |
834,95 |
817,285 |
17,6652 |
|
9.52 |
863,61 |
817,929 |
45,6813 |
|
10.52 |
816,88 |
824,352 |
-7,47243 |
|
11.52 |
862,39 |
820,602 |
41,7878 |
|
12.52 |
839,67 |
826,629 |
13,0407 |
|
1.53 |
812,22 |
827,325 |
-15,1049 |
|
2.53 |
822,04 |
822,522 |
-0,481777 |
|
3.53 |
823,26 |
820,492 |
2,76778 |
|
4.53 |
843,39 |
819,108 |
24,2822 |
|
5.53 |
865,42 |
822,054 |
43,3661 |
|
6.53 |
825,66 |
829,06 |
-3,39957 |
|
7.53 |
850,26 |
827,146 |
23,1142 |
|
8.53 |
828,34 |
830,501 |
-2,16078 |
|
9.53 |
783,02 |
829,032 |
-46,0119 |
|
10.53 |
807,71 |
818,771 |
-11,0612 |
|
11.53 |
791,73 |
815,041 |
-23,3105 |
|
12.53 |
829,32 |
808,749 |
20,5706 |
|
1.54 |
863,65 |
811,001 |
52,6487 |
|
2.54 |
878,19 |
819,875 |
58,3154 |
|
3.54 |
894,68 |
830,408 |
64,2723 |
|
4.54 |
873,43 |
842,715 |
30,7146 |
|
5.54 |
841,42 |
848,954 |
-7,53421 |
|
6.54 |
923,94 |
847,85 |
76,0896 |
|
7.54 |
919,01 |
863,396 |
55,6139 |
|
8.54 |
919,19 |
875,607 |
43,5825 |
|
9.54 |
881,18 |
885,969 |
-4,78872 |
|
10.54 |
911,06 |
887,092 |
23,9684 |
|
11.54 |
921,6 |
893,918 |
27,6821 |
|
12.54 |
1016,39 |
901,727 |
114,663 |
|
1.55 |
1055,37 |
927,209 |
128,161 |
|
2.55 |
1103,51 |
956,537 |
146,973 |
|
3.55 |
1112,47 |
990,909 |
121,561 |
|
4.55 |
1119,03 |
1021,67 |
97,3618 |
|
5.55 |
1113,04 |
1048,8 |
64,2366 |
|
6.55 |
1028,2 |
1070,29 |
-42,0871 |
|
7.55 |
1038,78 |
1071,15 |
-32,3684 |
|
8.55 |
1086,43 |
1073,53 |
12,8973 |
|
9.55 |
1105,96 |
1084,65 |
21,3137 |
|
10.55 |
1125,8 |
1097,57 |
28,2277 |
|
11.55 |
1124,88 |
1112,09 |
12,7859 |
|
12.55 |
1162,68 |
1123,81 |
38,8701 |
|
1.56 |
1204,92 |
1140,87 |
64,0496 |
|
2.56 |
1232,24 |
1163,36 |
68,8845 |
|
3.56 |
1138,69 |
1187,45 |
-48,758 |
|
4.56 |
1230,79 |
1188,7 |
42,0891 |
|
5.56 |
1271,72 |
1207,64 |
64,0843 |
|
6.56 |
1307,78 |
1231,39 |
76,3896 |
|
7.56 |
1328,18 |
1258,25 |
69,9331 |
|
8.56 |
1310,47 |
1284,58 |
25,8939 |
|
9.56 |
1326,15 |
1302,8 |
23,3532 |
|
10.56 |
1344,56 |
1320,77 |
23,7918 |
|
11.56 |
1348,83 |
1339,06 |
9,76905 |
|
12.56 |
1324,74 |
1354,79 |
-30,047 |
|
1.57 |
1347,72 |
1362,65 |
-14,9276 |
|
2.57 |
1213,49 |
1373,23 |
-159,742 |
|
3.57 |
1145,62 |
1354,7 |
-209,083 |
|
4.57 |
1180,98 |
1324,71 |
-143,73 |
|
5.57 |
1181,07 |
1305,7 |
-124,626 |
|
6.57 |
1145,27 |
1289,07 |
-143,795 |
|
7.57 |
995,52 |
1267,35 |
-271,835 |
|
8.57 |
957,73 |
1218,6 |
-260,868 |
|
9.57 |
1030,47 |
1169,32 |
-138,847 |
|
10.57 |
987,7 |
1141,83 |
-154,131 |
|
11.57 |
874,21 |
1109,9 |
-235,69 |
|
12.57 |
749,78 |
1060,12 |
-310,335 |
|
1.58 |
815,25 |
993,045 |
-177,795 |
|
2.58 |
788,89 |
949,379 |
-160,489 |
|
3.58 |
688,15 |
907,397 |
-219,247 |
|
4.58 |
689,85 |
852,058 |
-162,208 |
|
5.58 |
758,83 |
805,935 |
-47,1046 |
|
6.58 |
813,63 |
781,21 |
32,4203 |
|
7.58 |
820,49 |
771,919 |
48,5712 |
|
8.58 |
906,61 |
766,182 |
140,428 |
|
9.58 |
902,04 |
779,303 |
122,737 |
|
10.58 |
941,57 |
790,289 |
151,281 |
|
11.58 |
988,37 |
808,212 |
180,158 |
|
12.58 |
1024,29 |
833,423 |
190,867 |
|
1.59 |
1117,68 |
862,577 |
255,103 |
|
2.59 |
1125,11 |
906,487 |
218,623 |
|
3.59 |
1142,6 |
945,653 |
196,947 |
|
4.59 |
1196,45 |
982,669 |
213,781 |
|
5.59 |
1193,84 |
1025,02 |
168,819 |
|
6.59 |
1163,26 |
1060,52 |
102,741 |
|
7.59 |
1141,02 |
1084,49 |
56,5302 |
|
8.59 |
1170,72 |
1100,25 |
70,4745 |
|
9.59 |
1132,32 |
1119,36 |
12,9645 |
|
10.59 |
1143,91 |
1127,67 |
16,2419 |
|
11.59 |
1120,08 |
1136,77 |
-16,6859 |
|
12.59 |
1128,26 |
1139,44 |
-11,1806 |
|
1.60 |
1207,35 |
1143,05 |
64,3005 |
|
2.60 |
1148,54 |
1161,64 |
-13,1027 |
|
3.60 |
1163,89 |
1165,4 |
-1,50837 |
|
4.60 |
1166,96 |
1171,34 |
-4,38185 |
|
5.60 |
1156,66 |
1176,7 |
-20,0356 |
|
6.60 |
1155,66 |
1178,87 |
-23,2147 |
|
7.60 |
1134,28 |
1180,22 |
-45,9377 |
|
8.60 |
1104,87 |
1176,78 |
-71,9139 |
|
9.60 |
1055,55 |
1167,7 |
-112,145 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1172,27 |
977,839 |
1366,7 |
a=0.4
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,4
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
51,872 |
52,1027 |
MAE |
39,3655 |
52,1027 |
MAPE |
4,15949 |
4,93607 |
ME |
0,0860974 |
-52,1027 |
MPE |
0,0744924 |
-4,93607 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,4
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
821,084 |
-7,9143 |
|
2.50 |
877,02 |
803,568 |
73,4521 |
|
3.50 |
844,36 |
849,878 |
-5,51835 |
|
4.50 |
856,69 |
844,765 |
11,9252 |
|
5.50 |
924,97 |
852,723 |
72,2469 |
|
6.50 |
953,18 |
910,847 |
42,3332 |
|
7.50 |
892,74 |
956,599 |
-63,8591 |
|
8.50 |
874,46 |
924,171 |
-49,7108 |
|
9.50 |
771,4 |
892,844 |
-121,444 |
|
10.50 |
785,72 |
796,177 |
-10,4566 |
|
11.50 |
829,36 |
768,868 |
60,4919 |
|
12.50 |
865,08 |
796,645 |
68,4346 |
|
1.51 |
892,15 |
840,456 |
51,6944 |
|
2.51 |
947,28 |
881,823 |
65,4569 |
|
3.51 |
948,6 |
942,472 |
6,12825 |
|
4.51 |
992,79 |
966,131 |
26,6594 |
|
5.51 |
1017,36 |
1007,19 |
10,1651 |
|
6.51 |
997,49 |
1039,33 |
-41,8392 |
|
7.51 |
911,97 |
1031,49 |
-119,517 |
|
8.51 |
837,21 |
954,808 |
-117,598 |
|
9.51 |
857,42 |
860,541 |
-3,1213 |
|
10.51 |
798,01 |
839,04 |
-41,0304 |
|
11.51 |
859,33 |
786,713 |
72,6172 |
|
12.51 |
849,27 |
818,738 |
30,5316 |
|
1.52 |
838,65 |
828,714 |
9,93571 |
|
2.52 |
824,31 |
827,099 |
-2,78852 |
|
3.52 |
820,56 |
816,893 |
3,66692 |
|
4.52 |
821,28 |
811,406 |
9,87417 |
|
5.52 |
812,44 |
811,471 |
0,968915 |
|
6.52 |
786,55 |
805,992 |
-19,442 |
|
7.52 |
804,84 |
784,339 |
20,5008 |
|
8.52 |
834,95 |
791,53 |
43,4201 |
|
9.52 |
863,61 |
820,336 |
43,2738 |
|
10.52 |
816,88 |
855,973 |
-39,0927 |
|
11.52 |
862,39 |
832,64 |
29,7502 |
|
12.52 |
839,67 |
858,126 |
-18,4564 |
|
1.53 |
812,22 |
849,808 |
-37,5877 |
|
2.53 |
822,04 |
823,231 |
-1,19097 |
|
3.53 |
823,26 |
819,758 |
3,50241 |
|
4.53 |
843,39 |
819,848 |
23,5416 |
|
5.53 |
865,42 |
836,531 |
28,8891 |
|
6.53 |
825,66 |
861,258 |
-35,5981 |
|
7.53 |
850,26 |
839,018 |
11,2422 |
|
8.53 |
828,34 |
848,554 |
-20,214 |
|
9.53 |
783,02 |
834,724 |
-51,704 |
|
10.53 |
807,71 |
792,468 |
15,2422 |
|
11.53 |
791,73 |
795,496 |
-3,76588 |
|
12.53 |
829,32 |
785,756 |
43,5637 |
|
1.54 |
863,65 |
813,278 |
50,3722 |
|
2.54 |
878,19 |
853,216 |
24,9737 |
|
3.54 |
894,68 |
880,896 |
13,7844 |
|
4.54 |
873,43 |
903,619 |
-30,1892 |
|
5.54 |
841,42 |
893,369 |
-51,9494 |
|
6.54 |
923,94 |
860,881 |
63,0588 |
|
7.54 |
919,01 |
912,088 |
6,92234 |
|
8.54 |
919,19 |
928,474 |
-9,28435 |
|
9.54 |
881,18 |
933,003 |
-51,8233 |
|
10.54 |
911,06 |
902,016 |
9,04445 |
|
11.54 |
921,6 |
911,43 |
10,1697 |
|
12.54 |
1016,39 |
923,192 |
93,1977 |
|
1.55 |
1055,37 |
1003,0 |
52,3661 |
|
2.55 |
1103,51 |
1065,06 |
38,4482 |
|
3.55 |
1112,47 |
1124,36 |
-11,894 |
|
4.55 |
1119,03 |
1149,54 |
-30,5141 |
|
5.55 |
1113,04 |
1157,93 |
-44,8851 |
|
6.55 |
1028,2 |
1149,93 |
-121,727 |
|
7.55 |
1038,78 |
1073,27 |
-34,4938 |
|
8.55 |
1086,43 |
1046,93 |
39,4991 |
|
9.55 |
1105,96 |
1074,26 |
31,6968 |
|
10.55 |
1125,8 |
1101,67 |
24,1264 |
|
11.55 |
1124,88 |
1128,1 |
-3,21914 |
|
12.55 |
1162,68 |
1136,51 |
26,1715 |
|
1.56 |
1204,92 |
1167,92 |
37,0047 |
|
2.56 |
1232,24 |
1212,18 |
20,0639 |
|
3.56 |
1138,69 |
1248,8 |
-110,115 |
|
4.56 |
1230,79 |
1184,5 |
46,289 |
|
5.56 |
1271,72 |
1227,7 |
44,0182 |
|
6.56 |
1307,78 |
1276,49 |
31,2878 |
|
7.56 |
1328,18 |
1322,14 |
6,0388 |
|
8.56 |
1310,47 |
1352,6 |
-42,127 |
|
9.56 |
1326,15 |
1345,49 |
-19,3364 |
|
10.56 |
1344,56 |
1349,87 |
-5,30797 |
|
11.56 |
1348,83 |
1362,38 |
-13,5485 |
|
12.56 |
1324,74 |
1367,45 |
-42,7073 |
|
1.57 |
1347,72 |
1347,02 |
0,698715 |
|
2.57 |
1213,49 |
1354,49 |
-140,997 |
|
3.57 |
1145,62 |
1248,71 |
-103,088 |
|
4.57 |
1180,98 |
1150,7 |
30,2835 |
|
5.57 |
1181,07 |
1142,89 |
38,1818 |
|
6.57 |
1145,27 |
1146,24 |
-0,973895 |
|
7.57 |
995,52 |
1124,38 |
-128,864 |
|
8.57 |
957,73 |
1000,06 |
-42,3263 |
|
9.57 |
1030,47 |
924,341 |
106,129 |
|
10.57 |
987,7 |
960,617 |
27,0828 |
|
11.57 |
874,21 |
950,637 |
-76,4272 |
|
12.57 |
749,78 |
862,182 |
-112,402 |
|
1.58 |
815,25 |
732,719 |
82,5308 |
|
2.58 |
788,89 |
741,218 |
47,6719 |
|
3.58 |
688,15 |
735,035 |
-46,8848 |
|
4.58 |
689,85 |
660,834 |
29,0163 |
|
5.58 |
758,83 |
639,852 |
118,978 |
|
6.58 |
813,63 |
695,482 |
118,148 |
|
7.58 |
820,49 |
769,485 |
51,0053 |
|
8.58 |
906,61 |
808,677 |
97,9332 |
|
9.58 |
902,04 |
893,572 |
8,46787 |
|
10.58 |
941,57 |
922,564 |
19,0055 |
|
11.58 |
988,37 |
961,342 |
27,0282 |
|
12.58 |
1024,29 |
1009,58 |
14,7118 |
|
1.59 |
1117,68 |
1052,29 |
65,3941 |
|
2.59 |
1125,11 |
1137,89 |
-12,7834 |
|
3.59 |
1142,6 |
1171,42 |
-28,8219 |
|
4.59 |
1196,45 |
1190,07 |
6,3757 |
|
5.59 |
1193,84 |
1232,27 |
-38,4333 |
|
6.59 |
1163,26 |
1239,65 |
-76,3852 |
|
7.59 |
1141,02 |
1210,51 |
-69,4862 |
|
8.59 |
1170,72 |
1174,66 |
-3,94481 |
|
9.59 |
1132,32 |
1180,14 |
-47,8187 |
|
10.59 |
1143,91 |
1149,88 |
-5,97235 |
|
11.59 |
1120,08 |
1145,45 |
-25,3721 |
|
12.59 |
1128,26 |
1124,55 |
3,71356 |
|
1.60 |
1207,35 |
1122,85 |
84,5002 |
|
2.60 |
1148,54 |
1186,38 |
-37,8366 |
|
3.60 |
1163,89 |
1165,55 |
-1,66402 |
|
4.60 |
1166,96 |
1167,62 |
-0,655645 |
|
5.60 |
1156,66 |
1170,22 |
-13,5577 |
|
6.60 |
1155,66 |
1162,39 |
-6,73324 |
|
7.60 |
1134,28 |
1157,86 |
-23,5791 |
|
8.60 |
1104,87 |
1138,77 |
-33,901 |
|
9.60 |
1055,55 |
1107,65 |
-52,1027 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1098,23 |
996,564 |
1199,9 |
a=0.5
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,5
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
50,5719 |
42,6771 |
MAE |
38,2841 |
42,6771 |
MAPE |
4,04584 |
4,04311 |
ME |
0,0871449 |
-42,6771 |
MPE |
0,0612191 |
-4,04311 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,5
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
809,37 |
3,79969 |
|
2.50 |
877,02 |
796,739 |
80,2814 |
|
3.50 |
844,36 |
861,539 |
-17,1785 |
|
4.50 |
856,69 |
848,949 |
7,74112 |
|
5.50 |
924,97 |
856,984 |
67,9858 |
|
6.50 |
953,18 |
927,2 |
25,9805 |
|
7.50 |
892,74 |
972,406 |
-79,666 |
|
8.50 |
874,46 |
918,461 |
-44,0011 |
|
9.50 |
771,4 |
880,265 |
-108,865 |
|
10.50 |
785,72 |
766,204 |
19,5157 |
|
11.50 |
829,36 |
753,308 |
76,0518 |
|
12.50 |
865,08 |
801,827 |
63,2529 |
|
1.51 |
892,15 |
856,56 |
35,59 |
|
2.51 |
947,28 |
899,443 |
47,8367 |
|
3.51 |
948,6 |
963,471 |
-14,8708 |
|
4.51 |
992,79 |
976,75 |
16,0401 |
|
5.51 |
1017,36 |
1017,22 |
0,137746 |
|
6.51 |
997,49 |
1045,8 |
-48,3123 |
|
7.51 |
911,97 |
1025,97 |
-113,997 |
|
8.51 |
837,21 |
928,369 |
-91,1586 |
|
9.51 |
857,42 |
825,109 |
32,3105 |
|
10.51 |
798,01 |
822,53 |
-24,5198 |
|
11.51 |
859,33 |
771,197 |
88,1326 |
|
12.51 |
849,27 |
826,387 |
22,8825 |
|
1.52 |
838,65 |
838,361 |
0,289373 |
|
2.52 |
824,31 |
833,461 |
-9,15126 |
|
3.52 |
820,56 |
819,194 |
1,3664 |
|
4.52 |
821,28 |
813,156 |
8,12422 |
|
5.52 |
812,44 |
814,217 |
-1,77739 |
|
6.52 |
786,55 |
807,408 |
-20,8584 |
|
7.52 |
804,84 |
781,074 |
23,7659 |
|
8.52 |
834,95 |
794,149 |
40,8005 |
|
9.52 |
863,61 |
830,201 |
33,409 |
|
10.52 |
816,88 |
869,061 |
-52,1811 |
|
11.52 |
862,39 |
830,683 |
31,7067 |
|
12.52 |
839,67 |
863,148 |
-23,4781 |
|
1.53 |
812,22 |
848,355 |
-36,1347 |
|
2.53 |
822,04 |
815,035 |
7,00478 |
|
3.53 |
823,26 |
815,822 |
7,43846 |
|
4.53 |
843,39 |
818,793 |
24,5973 |
|
5.53 |
865,42 |
840,782 |
24,6377 |
|
6.53 |
825,66 |
868,962 |
-43,3017 |
|
7.53 |
850,26 |
835,361 |
14,8989 |
|
8.53 |
828,34 |
849,136 |
-20,7957 |
|
9.53 |
783,02 |
830,94 |
-47,9204 |
|
10.53 |
807,71 |
780,421 |
27,2885 |
|
11.53 |
791,73 |
793,131 |
-1,40138 |
|
12.53 |
829,32 |
783,974 |
45,3465 |
|
1.54 |
863,65 |
821,213 |
42,4368 |
|
2.54 |
878,19 |
866,88 |
11,3102 |
|
3.54 |
894,68 |
892,029 |
2,651 |
|
4.54 |
873,43 |
911,347 |
-37,9165 |
|
5.54 |
841,42 |
890,759 |
-49,3393 |
|
6.54 |
923,94 |
849,27 |
74,6698 |
|
7.54 |
919,01 |
919,455 |
-0,445338 |
|
8.54 |
919,19 |
933,193 |
-14,0028 |
|
9.54 |
881,18 |
933,261 |
-52,0815 |
|
10.54 |
911,06 |
891,751 |
19,3092 |
|
11.54 |
921,6 |
908,61 |
12,9896 |
|
12.54 |
1016,39 |
923,978 |
92,4123 |
|
1.55 |
1055,37 |
1022,02 |
33,3549 |
|
2.55 |
1103,51 |
1084,1 |
19,4118 |
|
3.55 |
1112,47 |
1140,58 |
-28,1069 |
|
4.55 |
1119,03 |
1154,39 |
-35,3599 |
|
5.55 |
1113,04 |
1153,92 |
-40,8831 |
|
6.55 |
1028,2 |
1139,09 |
-110,893 |
|
7.55 |
1038,78 |
1044,03 |
-5,25238 |
|
8.55 |
1086,43 |
1026,89 |
59,5409 |
|
9.55 |
1105,96 |
1073,23 |
32,734 |
|
10.55 |
1125,8 |
1107,64 |
18,1588 |
|
11.55 |
1124,88 |
1135,66 |
-10,7847 |
|
12.55 |
1162,68 |
1139,28 |
23,3956 |
|
1.56 |
1204,92 |
1174,39 |
30,5318 |
|
2.56 |
1232,24 |
1222,48 |
9,76287 |
|
3.56 |
1138,69 |
1257,43 |
-118,74 |
|
4.56 |
1230,79 |
1166,32 |
64,4692 |
|
5.56 |
1271,72 |
1228,74 |
42,9842 |
|
6.56 |
1307,78 |
1285,78 |
21,9969 |
|
7.56 |
1328,18 |
1332,59 |
-4,40913 |
|
8.56 |
1310,47 |
1358,49 |
-48,0184 |
|
9.56 |
1326,15 |
1339,68 |
-13,5261 |
|
10.56 |
1344,56 |
1343,35 |
1,20851 |
|
11.56 |
1348,83 |
1358,38 |
-9,54997 |
|
12.56 |
1324,74 |
1362,95 |
-38,2121 |
|
1.57 |
1347,72 |
1336,47 |
11,2454 |
|
2.57 |
1213,49 |
1349,9 |
-136,412 |
|
3.57 |
1145,62 |
1218,48 |
-72,8629 |
|
4.57 |
1180,98 |
1116,51 |
64,47 |
|
5.57 |
1181,07 |
1133,65 |
47,4157 |
|
6.57 |
1145,27 |
1149,86 |
-4,59179 |
|
7.57 |
995,52 |
1125,92 |
-130,396 |
|
8.57 |
957,73 |
975,018 |
-17,2878 |
|
9.57 |
1030,47 |
904,629 |
125,841 |
|
10.57 |
987,7 |
973,047 |
14,6531 |
|
11.57 |
874,21 |
961,737 |
-87,5272 |
|
12.57 |
749,78 |
851,91 |
-102,13 |
|
1.58 |
815,25 |
705,599 |
109,651 |
|
2.58 |
788,89 |
745,536 |
43,3539 |
|
3.58 |
688,15 |
746,589 |
-58,4389 |
|
4.58 |
689,85 |
656,687 |
33,1626 |
|
5.58 |
758,83 |
643,778 |
115,052 |
|
6.58 |
813,63 |
721,048 |
92,5817 |
|
7.58 |
820,49 |
804,611 |
15,8786 |
|
8.58 |
906,61 |
834,617 |
71,9932 |
|
9.58 |
902,04 |
924,706 |
-22,6665 |
|
10.58 |
941,57 |
938,135 |
3,43524 |
|
11.58 |
988,37 |
971,998 |
16,3719 |
|
12.58 |
1024,29 |
1019,66 |
4,63304 |
|
1.59 |
1117,68 |
1059,67 |
58,0101 |
|
2.59 |
1125,11 |
1154,22 |
-29,1082 |
|
3.59 |
1142,6 |
1176,15 |
-33,5507 |
|
4.59 |
1196,45 |
1186,36 |
10,0863 |
|
5.59 |
1193,84 |
1231,83 |
-37,986 |
|
6.59 |
1163,26 |
1231,74 |
-68,4776 |
|
7.59 |
1141,02 |
1191,66 |
-50,6411 |
|
8.59 |
1170,72 |
1152,3 |
18,4183 |
|
9.59 |
1132,32 |
1169,34 |
-37,0214 |
|
10.59 |
1143,91 |
1135,55 |
8,36401 |
|
11.59 |
1120,08 |
1137,88 |
-17,8006 |
|
12.59 |
1128,26 |
1116,14 |
12,1184 |
|
1.60 |
1207,35 |
1119,87 |
87,4785 |
|
2.60 |
1148,54 |
1201,99 |
-53,4511 |
|
3.60 |
1163,89 |
1165,05 |
-1,1607 |
|
4.60 |
1166,96 |
1167,04 |
-0,0779329 |
|
5.60 |
1156,66 |
1169,82 |
-13,1578 |
|
6.60 |
1155,66 |
1159,5 |
-3,83827 |
|
7.60 |
1134,28 |
1155,21 |
-20,9288 |
|
8.60 |
1104,87 |
1132,87 |
-27,9993 |
|
9.60 |
1055,55 |
1098,23 |
-42,6771 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1084,58 |
985,465 |
1183,7 |
a=0.6
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,6
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
50,9762 |
35,4066 |
MAE |
38,5725 |
35,4066 |
MAPE |
4,07968 |
3,35433 |
ME |
0,081635 |
-35,4066 |
MPE |
0,0504993 |
-3,35433 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,6
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
800,33 |
12,8401 |
|
2.50 |
877,02 |
794,35 |
82,6696 |
|
3.50 |
844,36 |
876,789 |
-32,4287 |
|
4.50 |
856,69 |
850,87 |
5,81989 |
|
5.50 |
924,97 |
859,175 |
65,7945 |
|
6.50 |
953,18 |
941,546 |
11,6344 |
|
7.50 |
892,74 |
982,61 |
-89,8696 |
|
8.50 |
874,46 |
906,057 |
-31,5972 |
|
9.50 |
771,4 |
867,079 |
-95,6786 |
|
10.50 |
785,72 |
739,827 |
45,8927 |
|
11.50 |
829,36 |
748,017 |
81,3427 |
|
12.50 |
865,08 |
815,269 |
49,8113 |
|
1.51 |
892,15 |
873,966 |
18,1842 |
|
2.51 |
947,28 |
912,642 |
34,6376 |
|
3.51 |
948,6 |
977,609 |
-29,0094 |
|
4.51 |
992,79 |
978,67 |
14,1205 |
|
5.51 |
1017,36 |
1021,04 |
-3,68213 |
|
6.51 |
997,49 |
1047,13 |
-49,645 |
|
7.51 |
911,97 |
1016,75 |
-104,777 |
|
8.51 |
837,21 |
902,328 |
-65,1183 |
|
9.51 |
857,42 |
797,78 |
59,6397 |
|
10.51 |
798,01 |
819,499 |
-21,4893 |
|
11.51 |
859,33 |
765,334 |
93,9962 |
|
12.51 |
849,27 |
842,015 |
7,25524 |
|
1.52 |
838,65 |
848,445 |
-9,7952 |
|
2.52 |
824,31 |
837,027 |
-12,717 |
|
3.52 |
820,56 |
818,576 |
1,98363 |
|
4.52 |
821,28 |
813,188 |
8,09163 |
|
5.52 |
812,44 |
815,844 |
-3,40408 |
|
6.52 |
786,55 |
807,618 |
-21,0679 |
|
7.52 |
804,84 |
776,97 |
27,8703 |
|
8.52 |
834,95 |
797,463 |
37,4871 |
|
9.52 |
863,61 |
839,53 |
24,0804 |
|
10.52 |
816,88 |
879,004 |
-62,1236 |
|
11.52 |
862,39 |
823,702 |
38,6883 |
|
12.52 |
839,67 |
867,01 |
-27,3396 |
|
1.53 |
812,22 |
845,012 |
-32,7918 |
|
2.53 |
822,04 |
806,629 |
15,4109 |
|
3.53 |
823,26 |
814,285 |
8,9754 |
|
4.53 |
843,39 |
819,765 |
23,6246 |
|
5.53 |
865,42 |
846,056 |
19,3636 |
|
6.53 |
825,66 |
875,739 |
-50,0791 |
|
7.53 |
850,26 |
829,061 |
21,1986 |
|
8.53 |
828,34 |
849,888 |
-21,5485 |
|
9.53 |
783,02 |
827,051 |
-44,0306 |
|
10.53 |
807,71 |
769,477 |
38,2333 |
|
11.53 |
791,73 |
794,768 |
-3,03846 |
|
12.53 |
829,32 |
784,298 |
45,0219 |
|
1.54 |
863,65 |
830,406 |
33,2437 |
|
2.54 |
878,19 |
878,589 |
-0,398565 |
|
3.54 |
894,68 |
898,368 |
-3,68784 |
|
4.54 |
873,43 |
914,057 |
-40,6265 |
|
5.54 |
841,42 |
884,091 |
-42,6711 |
|
6.54 |
923,94 |
837,047 |
86,8933 |
|
7.54 |
919,01 |
930,118 |
-11,108 |
|
8.54 |
919,19 |
936,869 |
-17,6793 |
|
9.54 |
881,18 |
931,736 |
-50,5562 |
|
10.54 |
911,06 |
880,786 |
30,2738 |
|
11.54 |
921,6 |
908,632 |
12,968 |
|
12.54 |
1016,39 |
926,609 |
89,7806 |
|
1.55 |
1055,37 |
1041,43 |
13,9396 |
|
2.55 |
1103,51 |
1097,56 |
5,94678 |
|
3.55 |
1112,47 |
1149,12 |
-36,6529 |
|
4.55 |
1119,03 |
1151,7 |
-32,6738 |
|
5.55 |
1113,04 |
1145,86 |
-32,8246 |
|
6.55 |
1028,2 |
1128,08 |
-99,8819 |
|
7.55 |
1038,78 |
1018,01 |
20,7664 |
|
8.55 |
1086,43 |
1016,77 |
69,6643 |
|
9.55 |
1105,96 |
1081,67 |
24,2888 |
|
10.55 |
1125,8 |
1117,21 |
8,59474 |
|
11.55 |
1124,88 |
1142,65 |
-17,7704 |
|
12.55 |
1162,68 |
1139,55 |
23,1285 |
|
1.56 |
1204,92 |
1179,13 |
25,7861 |
|
2.56 |
1232,24 |
1230,23 |
2,0083 |
|
3.56 |
1138,69 |
1262,08 |
-123,389 |
|
4.56 |
1230,79 |
1144,17 |
86,6174 |
|
5.56 |
1271,72 |
1233,85 |
37,8662 |
|
6.56 |
1307,78 |
1296,22 |
11,5641 |
|
7.56 |
1328,18 |
1340,65 |
-12,4673 |
|
8.56 |
1310,47 |
1360,4 |
-49,9341 |
|
9.56 |
1326,15 |
1330,71 |
-4,5625 |
|
10.56 |
1344,56 |
1337,49 |
7,06945 |
|
11.56 |
1348,83 |
1356,58 |
-7,75444 |
|
12.56 |
1324,74 |
1360,43 |
-35,6947 |
|
1.57 |
1347,72 |
1327,97 |
19,755 |
|
2.57 |
1213,49 |
1349,18 |
-135,695 |
|
3.57 |
1145,62 |
1190,98 |
-45,3567 |
|
4.57 |
1180,98 |
1092,32 |
88,6558 |
|
5.57 |
1181,07 |
1138,16 |
42,9117 |
|
6.57 |
1145,27 |
1161,02 |
-15,7455 |
|
7.57 |
995,52 |
1128,93 |
-133,412 |
|
8.57 |
957,73 |
949,981 |
7,74944 |
|
9.57 |
1030,47 |
892,394 |
138,076 |
|
10.57 |
987,7 |
993,989 |
-6,28949 |
|
11.57 |
874,21 |
972,054 |
-97,8437 |
|
12.57 |
749,78 |
837,989 |
-88,2086 |
|
1.58 |
815,25 |
680,262 |
134,988 |
|
2.58 |
788,89 |
758,616 |
30,2739 |
|
3.58 |
688,15 |
759,909 |
-71,759 |
|
4.58 |
689,85 |
649,661 |
40,189 |
|
5.58 |
758,83 |
647,917 |
110,913 |
|
6.58 |
813,63 |
745,51 |
68,1199 |
|
7.58 |
820,49 |
831,68 |
-11,1901 |
|
8.58 |
906,61 |
847,201 |
59,4087 |
|
9.58 |
902,04 |
943,413 |
-41,3726 |
|
10.58 |
941,57 |
940,073 |
1,49652 |
|
11.58 |
988,37 |
973,283 |
15,0868 |
|
12.58 |
1024,29 |
1023,34 |
0,950024 |
|
1.59 |
1117,68 |
1061,86 |
55,8161 |
|
2.59 |
1125,11 |
1166,57 |
-41,4591 |
|
3.59 |
1142,6 |
1174,64 |
-32,0379 |
|
4.59 |
1196,45 |
1179,09 |
17,3632 |
|
5.59 |
1193,84 |
1231,28 |
-37,4434 |
|
6.59 |
1163,26 |
1223,96 |
-60,7028 |
|
7.59 |
1141,02 |
1175,25 |
-34,2313 |
|
8.59 |
1170,72 |
1136,45 |
34,2674 |
|
9.59 |
1132,32 |
1167,53 |
-35,2091 |
|
10.59 |
1143,91 |
1127,57 |
16,34 |
|
11.59 |
1120,08 |
1136,79 |
-16,7146 |
|
12.59 |
1128,26 |
1112,24 |
16,0239 |
|
1.60 |
1207,35 |
1120,95 |
86,4035 |
|
2.60 |
1148,54 |
1219,88 |
-71,341 |
|
3.60 |
1163,89 |
1160,63 |
3,26261 |
|
4.60 |
1166,96 |
1165,22 |
1,74465 |
|
5.60 |
1156,66 |
1169,16 |
-12,4963 |
|
6.60 |
1155,66 |
1156,64 |
-0,97618 |
|
7.60 |
1134,28 |
1153,44 |
-19,1615 |
|
8.60 |
1104,87 |
1128,07 |
-23,203 |
|
9.60 |
1055,55 |
1090,96 |
-35,4066 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1073,33 |
973,419 |
1173,24 |
.
a=0.9
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,9
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
58,3618 |
22,0972 |
MAE |
44,7763 |
22,0972 |
MAPE |
4,72504 |
2,09343 |
ME |
0,189189 |
-22,0972 |
MPE |
0,0558394 |
-2,09343 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,9
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
767,074 |
46,0964 |
|
2.50 |
877,02 |
803,09 |
73,9296 |
|
3.50 |
844,36 |
926,545 |
-82,185 |
|
4.50 |
856,69 |
828,876 |
27,8137 |
|
5.50 |
924,97 |
862,635 |
62,3346 |
|
6.50 |
953,18 |
981,061 |
-27,8812 |
|
7.50 |
892,74 |
987,59 |
-94,8496 |
|
8.50 |
874,46 |
850,991 |
23,4689 |
|
9.50 |
771,4 |
850,538 |
-79,1377 |
|
10.50 |
785,72 |
684,402 |
101,318 |
|
11.50 |
829,36 |
778,985 |
50,3749 |
|
12.50 |
865,08 |
863,938 |
1,14181 |
|
1.51 |
892,15 |
901,075 |
-8,92539 |
|
2.51 |
947,28 |
921,016 |
26,2635 |
|
3.51 |
948,6 |
997,068 |
-48,468 |
|
4.51 |
992,79 |
959,876 |
32,9138 |
|
5.51 |
1017,36 |
1029,91 |
-12,5526 |
|
6.51 |
997,49 |
1044,77 |
-47,2797 |
|
7.51 |
911,97 |
986,95 |
-74,9804 |
|
8.51 |
837,21 |
840,973 |
-3,76328 |
|
9.51 |
857,42 |
762,453 |
94,9671 |
|
10.51 |
798,01 |
858,599 |
-60,5889 |
|
11.51 |
859,33 |
751,667 |
107,663 |
|
12.51 |
849,27 |
898,512 |
-49,2416 |
|
1.52 |
838,65 |
850,135 |
-11,4849 |
|
2.52 |
824,31 |
829,835 |
-5,52457 |
|
3.52 |
820,56 |
810,96 |
9,59993 |
|
4.52 |
821,28 |
814,835 |
6,44523 |
|
5.52 |
812,44 |
820,807 |
-8,36695 |
|
6.52 |
786,55 |
805,338 |
-18,7878 |
|
7.52 |
804,84 |
764,334 |
40,5061 |
|
8.52 |
834,95 |
814,841 |
20,1091 |
|
9.52 |
863,61 |
861,443 |
2,16676 |
|
10.52 |
816,88 |
892,038 |
-75,1577 |
|
11.52 |
862,39 |
785,203 |
77,1868 |
|
12.52 |
839,67 |
891,711 |
-52,0411 |
|
1.53 |
812,22 |
828,13 |
-15,9101 |
|
2.53 |
822,04 |
787,432 |
34,6084 |
|
3.53 |
823,26 |
824,779 |
-1,51922 |
|
4.53 |
843,39 |
825,13 |
18,2601 |
|
5.53 |
865,42 |
859,853 |
5,56721 |
|
6.53 |
825,66 |
886,519 |
-60,8592 |
|
7.53 |
850,26 |
798,128 |
52,1325 |
|
8.53 |
828,34 |
863,825 |
-35,4849 |
|
9.53 |
783,02 |
814,038 |
-31,0183 |
|
10.53 |
807,71 |
743,549 |
64,1612 |
|
11.53 |
791,73 |
819,258 |
-27,5276 |
|
12.53 |
829,32 |
781,897 |
47,4229 |
|
1.54 |
863,65 |
857,15 |
6,49985 |
|
2.54 |
878,19 |
897,154 |
-18,9643 |
|
3.54 |
894,68 |
896,588 |
-1,90785 |
|
4.54 |
873,43 |
911,362 |
-37,9319 |
|
5.54 |
841,42 |
859,747 |
-18,3273 |
|
6.54 |
923,94 |
812,696 |
111,244 |
|
7.54 |
919,01 |
984,028 |
-65,018 |
|
8.54 |
919,19 |
928,196 |
-9,00603 |
|
9.54 |
881,18 |
920,521 |
-39,341 |
|
10.54 |
911,06 |
850,948 |
60,1119 |
|
11.54 |
921,6 |
928,524 |
-6,92422 |
|
12.54 |
1016,39 |
934,126 |
82,264 |
|
1.55 |
1055,37 |
1094,66 |
-39,288 |
|
2.55 |
1103,51 |
1103,03 |
0,47977 |
|
3.55 |
1112,47 |
1151,16 |
-38,6912 |
|
4.55 |
1119,03 |
1129,17 |
-10,143 |
|
5.55 |
1113,04 |
1127,23 |
-14,1917 |
|
6.55 |
1028,2 |
1109,79 |
-81,5869 |
|
7.55 |
1038,78 |
959,535 |
79,2445 |
|
8.55 |
1086,43 |
1032,7 |
53,7348 |
|
9.55 |
1105,96 |
1124,13 |
-18,1655 |
|
10.55 |
1125,8 |
1129,66 |
-3,86045 |
|
11.55 |
1124,88 |
1146,23 |
-21,3504 |
|
12.55 |
1162,68 |
1128,19 |
34,4885 |
|
1.56 |
1204,92 |
1193,37 |
11,5512 |
|
2.56 |
1232,24 |
1245,19 |
-12,9546 |
|
3.56 |
1138,69 |
1262,27 |
-123,576 |
|
4.56 |
1230,79 |
1069,73 |
161,064 |
|
5.56 |
1271,72 |
1289,44 |
-17,7214 |
|
6.56 |
1307,78 |
1317,8 |
-10,0249 |
|
7.56 |
1328,18 |
1345,67 |
-17,4878 |
|
8.56 |
1310,47 |
1351,98 |
-41,5073 |
|
9.56 |
1326,15 |
1300,89 |
25,2634 |
|
10.56 |
1344,56 |
1336,36 |
8,19776 |
|
11.56 |
1348,83 |
1361,58 |
-12,7531 |
|
12.56 |
1324,74 |
1355,73 |
-30,9926 |
|
1.57 |
1347,72 |
1306,72 |
40,999 |
|
2.57 |
1213,49 |
1362,19 |
-148,7 |
|
3.57 |
1145,62 |
1109,41 |
36,21 |
|
4.57 |
1180,98 |
1069,02 |
111,959 |
|
5.57 |
1181,07 |
1194,31 |
-13,2403 |
|
6.57 |
1145,27 |
1184,93 |
-39,6577 |
|
7.57 |
995,52 |
1117,27 |
-121,749 |
|
8.57 |
957,73 |
869,723 |
88,0068 |
|
9.57 |
1030,47 |
901,121 |
129,349 |
|
10.57 |
987,7 |
1078,22 |
-90,5203 |
|
11.57 |
874,21 |
964,328 |
-90,1175 |
|
12.57 |
749,78 |
777,838 |
-28,0583 |
|
1.58 |
815,25 |
630,06 |
185,19 |
|
2.58 |
788,89 |
843,402 |
-54,5115 |
|
3.58 |
688,15 |
775,284 |
-87,1342 |
|
4.58 |
689,85 |
604,292 |
85,5583 |
|
5.58 |
758,83 |
673,567 |
85,263 |
|
6.58 |
813,63 |
811,613 |
2,01702 |
|
7.58 |
820,49 |
868,879 |
-48,3892 |
|
8.58 |
906,61 |
837,048 |
69,562 |
|
9.58 |
902,04 |
978,334 |
-76,2937 |
|
10.58 |
941,57 |
913,424 |
28,1456 |
|
11.58 |
988,37 |
974,708 |
13,6621 |
|
12.58 |
1024,29 |
1032,72 |
-8,42904 |
|
1.59 |
1117,68 |
1062,03 |
55,6476 |
|
2.59 |
1125,11 |
1199,86 |
-74,7462 |
|
3.59 |
1142,6 |
1148,05 |
-5,44571 |
|
4.59 |
1196,45 |
1160,43 |
36,0183 |
|
5.59 |
1193,84 |
1243,04 |
-49,2019 |
|
6.59 |
1163,26 |
1201,43 |
-38,1706 |
|
7.59 |
1141,02 |
1139,82 |
1,19791 |
|
8.59 |
1170,72 |
1118,16 |
52,5613 |
|
9.59 |
1132,32 |
1189,92 |
-57,5997 |
|
10.59 |
1143,91 |
1105,97 |
37,9444 |
|
11.59 |
1120,08 |
1147,34 |
-27,2551 |
|
12.59 |
1128,26 |
1102,08 |
26,1795 |
|
1.60 |
1207,35 |
1130,93 |
76,4185 |
|
2.60 |
1148,54 |
1271,42 |
-122,878 |
|
3.60 |
1163,89 |
1115,07 |
48,8202 |
|
4.60 |
1166,96 |
1168,25 |
-1,28718 |
|
5.60 |
1156,66 |
1170,78 |
-14,1156 |
|
6.60 |
1155,66 |
1149,17 |
6,48974 |
|
7.60 |
1134,28 |
1153,22 |
-18,9409 |
|
8.60 |
1104,87 |
1116,75 |
-11,8831 |
|
9.60 |
1055,55 |
1077,65 |
-22,0972 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1050,31 |
935,918 |
1164,69 |
Оптимизированное значение а= 0,5306
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's linear exp. smoothing with alpha = 0,5306
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
50,7506 |
40,2496 |
MAE |
38,2345 |
40,2496 |
MAPE |
4,04117 |
3,81314 |
ME |
0,0853813 |
-40,2496 |
MPE |
0,057495 |
-3,81314 |
Forecast Table for ConsGOODS
Model: Brown's linear exp. smoothing with alpha = 0,5306
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
806,383 |
6,78681 |
|
2.50 |
877,02 |
795,615 |
81,4047 |
|
3.50 |
844,36 |
865,943 |
-21,5827 |
|
4.50 |
856,69 |
849,898 |
6,79177 |
|
5.50 |
924,97 |
857,888 |
67,0816 |
|
6.50 |
953,18 |
931,77 |
21,4097 |
|
7.50 |
892,74 |
976,071 |
-83,3311 |
|
8.50 |
874,46 |
915,249 |
-40,7886 |
|
9.50 |
771,4 |
876,111 |
-104,711 |
|
10.50 |
785,72 |
757,656 |
28,0641 |
|
11.50 |
829,36 |
750,622 |
78,7383 |
|
12.50 |
865,08 |
805,264 |
59,816 |
|
1.51 |
892,15 |
861,994 |
30,1563 |
|
2.51 |
947,28 |
904,089 |
43,1911 |
|
3.51 |
948,6 |
968,507 |
-19,9067 |
|
4.51 |
992,79 |
978,125 |
14,665 |
|
5.51 |
1017,36 |
1018,83 |
-1,46632 |
|
6.51 |
997,49 |
1046,54 |
-49,0478 |
|
7.51 |
911,97 |
1023,34 |
-111,373 |
|
8.51 |
837,21 |
920,2 |
-82,99 |
|
9.51 |
857,42 |
815,821 |
41,5985 |
|
10.51 |
798,01 |
820,292 |
-22,2816 |
|
11.51 |
859,33 |
768,684 |
90,6464 |
|
12.51 |
849,27 |
830,642 |
18,6283 |
|
1.52 |
838,65 |
841,694 |
-3,04448 |
|
2.52 |
824,31 |
834,993 |
-10,6826 |
|
3.52 |
820,56 |
819,328 |
1,23195 |
|
4.52 |
821,28 |
813,3 |
7,98033 |
|
5.52 |
812,44 |
814,78 |
-2,33951 |
|
6.52 |
786,55 |
807,555 |
-21,0047 |
|
7.52 |
804,84 |
779,864 |
24,9763 |
|
8.52 |
834,95 |
795,054 |
39,8958 |
|
9.52 |
863,61 |
833,109 |
30,501 |
|
10.52 |
816,88 |
872,426 |
-55,5461 |
|
11.52 |
862,39 |
829,017 |
33,3728 |
|
12.52 |
839,67 |
864,331 |
-24,6608 |
|
1.53 |
812,22 |
847,455 |
-35,2348 |
|
2.53 |
822,04 |
812,415 |
9,62525 |
|
3.53 |
823,26 |
815,06 |
8,19969 |
|
4.53 |
843,39 |
818,903 |
24,4871 |
|
5.53 |
865,42 |
842,338 |
23,0818 |
|
6.53 |
825,66 |
871,176 |
-45,5162 |
|
7.53 |
850,26 |
833,716 |
16,5436 |
|
8.53 |
828,34 |
849,3 |
-20,96 |
|
9.53 |
783,02 |
829,742 |
-46,7224 |
|
10.53 |
807,71 |
776,945 |
30,7653 |
|
11.53 |
791,73 |
793,223 |
-1,49292 |
|
12.53 |
829,32 |
783,93 |
45,3897 |
|
1.54 |
863,65 |
823,969 |
39,6808 |
|
2.54 |
878,19 |
870,729 |
7,46135 |
|
3.54 |
894,68 |
894,468 |
0,211589 |
|
4.54 |
873,43 |
912,615 |
-39,1854 |
|
5.54 |
841,42 |
889,014 |
-47,5938 |
|
6.54 |
923,94 |
845,457 |
78,4829 |
|
7.54 |
919,01 |
922,294 |
-3,28364 |
|
8.54 |
919,19 |
934,455 |
-15,2653 |
|
9.54 |
881,18 |
932,978 |
-51,7976 |
|
10.54 |
911,06 |
888,434 |
22,6259 |
|
11.54 |
921,6 |
908,286 |
13,3141 |
|
12.54 |
1016,39 |
924,626 |
91,764 |
|
1.55 |
1055,37 |
1027,97 |
27,4044 |
|
2.55 |
1103,51 |
1088,84 |
14,6683 |
|
3.55 |
1112,47 |
1143,92 |
-31,4476 |
|
4.55 |
1119,03 |
1154,18 |
-35,1549 |
|
5.55 |
1113,04 |
1151,66 |
-38,6244 |
|
6.55 |
1028,2 |
1135,56 |
-107,365 |
|
7.55 |
1038,78 |
1035,64 |
3,13639 |
|
8.55 |
1086,43 |
1022,76 |
63,6708 |
|
9.55 |
1105,96 |
1075,0 |
30,9631 |
|
10.55 |
1125,8 |
1110,45 |
15,3491 |
|
11.55 |
1124,88 |
1138,05 |
-13,1725 |
|
12.55 |
1162,68 |
1139,71 |
22,9717 |
|
1.56 |
1204,92 |
1176,01 |
28,9082 |
|
2.56 |
1232,24 |
1225,08 |
7,15751 |
|
3.56 |
1138,69 |
1259,21 |
-120,52 |
|
4.56 |
1230,79 |
1159,86 |
70,9287 |
|
5.56 |
1271,72 |
1229,75 |
41,9728 |
|
6.56 |
1307,78 |
1288,87 |
18,9059 |
|
7.56 |
1328,18 |
1335,34 |
-7,15927 |
|
8.56 |
1310,47 |
1359,47 |
-48,9968 |
|
9.56 |
1326,15 |
1337,18 |
-11,0307 |
|
10.56 |
1344,56 |
1341,39 |
3,17012 |
|
11.56 |
1348,83 |
1357,56 |
-8,73342 |
|
12.56 |
1324,74 |
1362,0 |
-37,2574 |
|
1.57 |
1347,72 |
1333,7 |
14,017 |
|
2.57 |
1213,49 |
1349,33 |
-135,842 |
|
3.57 |
1145,62 |
1209,88 |
-64,2566 |
|
4.57 |
1180,98 |
1108,14 |
72,8368 |
|
5.57 |
1181,07 |
1133,8 |
47,2672 |
|
6.57 |
1145,27 |
1152,83 |
-7,56413 |
|
7.57 |
995,52 |
1126,99 |
-131,466 |
|
8.57 |
957,73 |
967,524 |
-9,79352 |
|
9.57 |
1030,47 |
900,167 |
130,303 |
|
10.57 |
987,7 |
978,724 |
8,97591 |
|
11.57 |
874,21 |
965,214 |
-91,0038 |
|
12.57 |
749,78 |
848,132 |
-98,3521 |
|
1.58 |
815,25 |
697,631 |
117,619 |
|
2.58 |
788,89 |
748,629 |
40,2608 |
|
3.58 |
688,15 |
750,649 |
-62,4988 |
|
4.58 |
689,85 |
654,955 |
34,8952 |
|
5.58 |
758,83 |
645,02 |
113,81 |
|
6.58 |
813,63 |
728,653 |
84,9765 |
|
7.58 |
820,49 |
813,731 |
6,75938 |
|
8.58 |
906,61 |
839,728 |
66,8823 |
|
9.58 |
902,04 |
931,43 |
-29,3902 |
|
10.58 |
941,57 |
939,798 |
1,77184 |
|
11.58 |
988,37 |
972,961 |
15,4091 |
|
12.58 |
1024,29 |
1021,09 |
3,1957 |
|
1.59 |
1117,68 |
1060,61 |
57,0749 |
|
2.59 |
1125,11 |
1158,19 |
-33,0822 |
|
3.59 |
1142,6 |
1176,17 |
-33,5732 |
|
4.59 |
1196,45 |
1184,32 |
12,1307 |
|
5.59 |
1193,84 |
1231,51 |
-37,6743 |
|
6.59 |
1163,26 |
1229,27 |
-66,0115 |
|
7.59 |
1141,02 |
1186,35 |
-45,3306 |
|
8.59 |
1170,72 |
1146,79 |
23,9284 |
|
9.59 |
1132,32 |
1167,97 |
-35,648 |
|
10.59 |
1143,91 |
1132,66 |
11,2513 |
|
11.59 |
1120,08 |
1137,08 |
-17,0027 |
|
12.59 |
1128,26 |
1114,69 |
13,5688 |
|
1.60 |
1207,35 |
1119,96 |
87,3947 |
|
2.60 |
1148,54 |
1207,38 |
-58,8436 |
|
3.60 |
1163,89 |
1164,23 |
-0,338563 |
|
4.60 |
1166,96 |
1166,59 |
0,367533 |
|
5.60 |
1156,66 |
1169,61 |
-12,9504 |
|
6.60 |
1155,66 |
1158,6 |
-2,93878 |
|
7.60 |
1134,28 |
1154,57 |
-20,2855 |
|
8.60 |
1104,87 |
1131,3 |
-26,4265 |
|
9.60 |
1055,55 |
1095,8 |
-40,2496 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1080,91 |
981,826 |
1179,99 |
Приложение 6
Построение модели квадратичного экспоненциального сглаживания Брауна
a=0.1
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's quadratic exp. smoothing with alpha = 0,1
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
89,2933 |
122,993 |
MAE |
65,5599 |
122,993 |
MAPE |
6,73224 |
11,6521 |
ME |
1,2106 |
-122,993 |
MPE |
0,142105 |
-11,6521 |
Forecast Table for ConsGOODS
Model: Brown's quadratic exp. smoothing with alpha = 0,1
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
861,146 |
-47,9758 |
|
2.50 |
877,02 |
845,326 |
31,6941 |
|
3.50 |
844,36 |
851,921 |
-7,56124 |
|
4.50 |
856,69 |
847,596 |
9,09365 |
|
5.50 |
924,97 |
847,978 |
76,9917 |
|
6.50 |
953,18 |
868,932 |
84,2478 |
|
7.50 |
892,74 |
894,311 |
-1,57145 |
|
8.50 |
874,46 |
896,488 |
-22,0281 |
|
9.50 |
771,4 |
892,581 |
-121,181 |
|
10.50 |
785,72 |
858,365 |
-72,645 |
|
11.50 |
829,36 |
835,151 |
-5,79107 |
|
12.50 |
865,08 |
829,769 |
35,3108 |
|
1.51 |
892,15 |
836,427 |
55,7233 |
|
2.51 |
947,28 |
850,144 |
97,1359 |
|
3.51 |
948,6 |
877,869 |
70,7309 |
|
4.51 |
992,79 |
900,555 |
92,2355 |
|
5.51 |
1017,36 |
931,878 |
85,4818 |
|
6.51 |
997,49 |
964,079 |
33,4115 |
|
7.51 |
911,97 |
983,45 |
-71,4801 |
|
8.51 |
837,21 |
972,67 |
-135,46 |
|
9.51 |
857,42 |
940,898 |
-83,4784 |
|
10.51 |
798,01 |
920,933 |
-122,923 |
|
11.51 |
859,33 |
886,769 |
-27,4394 |
|
12.51 |
849,27 |
877,62 |
-28,3497 |
|
1.52 |
838,65 |
867,307 |
-28,6573 |
|
2.52 |
824,31 |
855,958 |
-31,6481 |
|
3.52 |
820,56 |
842,73 |
-22,1697 |
|
4.52 |
821,28 |
831,244 |
-9,96437 |
|
5.52 |
812,44 |
822,573 |
-10,1329 |
|
6.52 |
786,55 |
813,347 |
-26,7972 |
|
7.52 |
804,84 |
798,604 |
6,23648 |
|
8.52 |
834,95 |
792,741 |
42,2089 |
|
9.52 |
863,61 |
797,606 |
66,0041 |
|
10.52 |
816,88 |
810,63 |
6,24999 |
|
11.52 |
862,39 |
807,505 |
54,8852 |
|
12.52 |
839,67 |
819,02 |
20,6496 |
|
1.53 |
812,22 |
821,781 |
-9,56097 |
|
2.53 |
822,04 |
816,022 |
6,01826 |
|
3.53 |
823,26 |
814,594 |
8,66599 |
|
4.53 |
843,39 |
814,076 |
29,3139 |
|
5.53 |
865,42 |
819,954 |
45,4664 |
|
6.53 |
825,66 |
831,506 |
-5,84598 |
|
7.53 |
850,26 |
829,008 |
21,2524 |
|
8.53 |
828,34 |
834,488 |
-6,14783 |
|
9.53 |
783,02 |
832,404 |
-49,3842 |
|
10.53 |
807,71 |
817,205 |
-9,49506 |
|
11.53 |
791,73 |
812,525 |
-20,7949 |
|
12.53 |
829,32 |
804,154 |
25,1658 |
|
1.54 |
863,65 |
808,923 |
54,7272 |
|
2.54 |
878,19 |
823,269 |
54,9212 |
|
3.54 |
894,68 |
839,294 |
55,386 |
|
4.54 |
873,43 |
857,14 |
16,2897 |
|
5.54 |
841,42 |
865,008 |
-23,5881 |
|
6.54 |
923,94 |
861,545 |
62,3945 |
|
7.54 |
919,01 |
883,331 |
35,6794 |
|
8.54 |
919,19 |
899,11 |
20,0801 |
|
9.54 |
881,18 |
911,479 |
-30,2992 |
|
10.54 |
911,06 |
909,572 |
1,48791 |
|
11.54 |
921,6 |
916,547 |
5,05274 |
|
12.54 |
1016,39 |
924,861 |
91,5287 |
|
1.55 |
1055,37 |
959,496 |
95,874 |
|
2.55 |
1103,51 |
998,412 |
105,098 |
|
3.55 |
1112,47 |
1043,29 |
69,1765 |
|
4.55 |
1119,03 |
1080,97 |
38,0594 |
|
5.55 |
1113,04 |
1111,91 |
1,12834 |
|
6.55 |
1028,2 |
1133,51 |
-105,308 |
|
7.55 |
1038,78 |
1123,84 |
-85,0588 |
|
8.55 |
1086,43 |
1117,72 |
-31,2871 |
|
9.55 |
1105,96 |
1125,7 |
-19,7421 |
|
10.55 |
1125,8 |
1136,65 |
-10,8538 |
|
11.55 |
1124,88 |
1150,09 |
-25,2103 |
|
12.55 |
1162,68 |
1159,29 |
3,39497 |
|
1.56 |
1204,92 |
1176,69 |
28,235 |
|
2.56 |
1232,24 |
1201,99 |
30,2464 |
|
3.56 |
1138,69 |
1229,11 |
-90,4208 |
|
4.56 |
1230,79 |
1221,32 |
9,46839 |
|
5.56 |
1271,72 |
1241,2 |
30,5168 |
|
6.56 |
1307,78 |
1268,01 |
39,7705 |
|
7.56 |
1328,18 |
1298,84 |
29,3368 |
|
8.56 |
1310,47 |
1328,11 |
-17,636 |
|
9.56 |
1326,15 |
1344,56 |
-18,4131 |
|
10.56 |
1344,56 |
1360,69 |
-16,1333 |
|
11.56 |
1348,83 |
1377,37 |
-28,5426 |
|
12.56 |
1324,74 |
1390,24 |
-65,5045 |
|
1.57 |
1347,72 |
1391,55 |
-43,8346 |
|
2.57 |
1213,49 |
1397,76 |
-184,265 |
|
3.57 |
1145,62 |
1360,8 |
-215,18 |
|
4.57 |
1180,98 |
1309,29 |
-128,309 |
|
5.57 |
1181,07 |
1277,44 |
-96,3737 |
|
6.57 |
1145,27 |
1251,18 |
-105,906 |
|
7.57 |
995,52 |
1218,87 |
-223,355 |
|
8.57 |
957,73 |
1147,78 |
-190,053 |
|
9.57 |
1030,47 |
1079,5 |
-49,026 |
|
10.57 |
987,7 |
1047,11 |
-59,4075 |
|
11.57 |
874,21 |
1009,24 |
-135,026 |
|
12.57 |
749,78 |
945,949 |
-196,169 |
|
1.58 |
815,25 |
859,262 |
-44,0116 |
|
2.58 |
788,89 |
811,195 |
-22,3049 |
|
3.58 |
688,15 |
766,982 |
-78,832 |
|
4.58 |
689,85 |
703,76 |
-13,9099 |
|
5.58 |
758,83 |
656,245 |
102,585 |
|
6.58 |
813,63 |
641,779 |
171,851 |
|
7.58 |
820,49 |
649,673 |
170,817 |
|
8.58 |
906,61 |
661,018 |
245,592 |
|
9.58 |
902,04 |
698,698 |
203,342 |
|
10.58 |
941,57 |
730,019 |
211,551 |
|
11.58 |
988,37 |
769,097 |
219,273 |
|
12.58 |
1024,29 |
816,235 |
208,055 |
|
1.59 |
1117,68 |
866,195 |
251,485 |
|
2.59 |
1125,11 |
935,253 |
189,857 |
|
3.59 |
1142,6 |
993,404 |
149,196 |
|
4.59 |
1196,45 |
1045,34 |
151,11 |
|
5.59 |
1193,84 |
1102,8 |
91,0364 |
|
6.59 |
1163,26 |
1147,41 |
15,8549 |
|
7.59 |
1141,02 |
1172,96 |
-31,9411 |
|
8.59 |
1170,72 |
1185,52 |
-14,8027 |
|
9.59 |
1132,32 |
1203,15 |
-70,8324 |
|
10.59 |
1143,91 |
1204,38 |
-60,4718 |
|
11.59 |
1120,08 |
1207,43 |
-87,3524 |
|
12.59 |
1128,26 |
1201,37 |
-73,1119 |
|
1.60 |
1207,35 |
1197,67 |
9,68047 |
|
2.60 |
1148,54 |
1217,23 |
-68,6909 |
|
3.60 |
1163,89 |
1214,12 |
-50,2274 |
|
4.60 |
1166,96 |
1215,04 |
-48,0782 |
|
5.60 |
1156,66 |
1215,58 |
-58,924 |
|
6.60 |
1155,66 |
1211,87 |
-56,2108 |
|
7.60 |
1134,28 |
1207,59 |
-73,3127 |
|
8.60 |
1104,87 |
1196,83 |
-91,9576 |
|
9.60 |
1055,55 |
1178,54 |
-122,993 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1185,29 |
1010,28 |
1360,3 |
a=0.3
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's quadratic exp. smoothing with alpha = 0,3
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
54,9606 |
41,4992 |
MAE |
42,4139 |
41,4992 |
MAPE |
4,45508 |
3,93152 |
ME |
-0,0901188 |
-41,4992 |
MPE |
0,0742049 |
-3,93152 |
Forecast Table for ConsGOODS
Model: Brown's quadratic exp. smoothing with alpha = 0,3
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
814,74 |
-1,56958 |
|
2.50 |
877,02 |
794,965 |
82,0552 |
|
3.50 |
844,36 |
848,244 |
-3,88449 |
|
4.50 |
856,69 |
844,507 |
12,1831 |
|
5.50 |
924,97 |
854,57 |
70,3996 |
|
6.50 |
953,18 |
920,602 |
32,5777 |
|
7.50 |
892,74 |
972,216 |
-79,4755 |
|
8.50 |
874,46 |
934,291 |
-59,8307 |
|
9.50 |
771,4 |
895,981 |
-124,581 |
|
10.50 |
785,72 |
784,49 |
1,23024 |
|
11.50 |
829,36 |
752,224 |
77,1361 |
|
12.50 |
865,08 |
784,874 |
80,206 |
|
1.51 |
892,15 |
837,415 |
54,7345 |
|
2.51 |
947,28 |
887,073 |
60,2073 |
|
3.51 |
948,6 |
956,984 |
-8,38371 |
|
4.51 |
992,79 |
983,447 |
9,3434 |
|
5.51 |
1017,36 |
1027,25 |
-9,8937 |
|
6.51 |
997,49 |
1059,7 |
-62,2072 |
|
7.51 |
911,97 |
1046,07 |
-134,097 |
|
8.51 |
837,21 |
954,352 |
-117,142 |
|
9.51 |
857,42 |
843,423 |
13,9972 |
|
10.51 |
798,01 |
817,003 |
-18,9926 |
|
11.51 |
859,33 |
759,62 |
99,71 |
|
12.51 |
849,27 |
799,269 |
50,0012 |
|
1.52 |
838,65 |
815,916 |
22,7343 |
|
2.52 |
824,31 |
819,029 |
5,28083 |
|
3.52 |
820,56 |
811,429 |
9,13074 |
|
4.52 |
821,28 |
808,19 |
13,0896 |
|
5.52 |
812,44 |
810,593 |
1,84727 |
|
6.52 |
786,55 |
806,271 |
-19,7206 |
|
7.52 |
804,84 |
783,249 |
21,591 |
|
8.52 |
834,95 |
792,346 |
42,604 |
|
9.52 |
863,61 |
825,915 |
37,6955 |
|
10.52 |
816,88 |
866,882 |
-50,0017 |
|
11.52 |
862,39 |
840,563 |
21,8273 |
|
12.52 |
839,67 |
867,871 |
-28,2007 |
|
1.53 |
812,22 |
857,178 |
-44,9581 |
|
2.53 |
822,04 |
825,51 |
-3,47027 |
|
3.53 |
823,26 |
820,002 |
3,25802 |
|
4.53 |
843,39 |
819,357 |
24,0325 |
|
5.53 |
865,42 |
837,941 |
27,4787 |
|
6.53 |
825,66 |
865,855 |
-40,1951 |
|
7.53 |
850,26 |
840,67 |
9,58985 |
|
8.53 |
828,34 |
850,569 |
-22,2294 |
|
9.53 |
783,02 |
834,466 |
-51,4457 |
|
10.53 |
807,71 |
786,369 |
21,3406 |
|
11.53 |
791,73 |
789,594 |
2,13568 |
|
12.53 |
829,32 |
779,612 |
49,7084 |
|
1.54 |
863,65 |
811,912 |
51,738 |
|
2.54 |
878,19 |
858,409 |
19,7811 |
|
3.54 |
894,68 |
890,405 |
4,27528 |
|
4.54 |
873,43 |
915,474 |
-42,0439 |
|
5.54 |
841,42 |
902,232 |
-60,812 |
|
6.54 |
923,94 |
863,084 |
60,8558 |
|
7.54 |
919,01 |
918,22 |
0,789762 |
|
8.54 |
919,19 |
935,288 |
-16,0981 |
|
9.54 |
881,18 |
938,573 |
-57,3933 |
|
10.54 |
911,06 |
901,571 |
9,48905 |
|
11.54 |
921,6 |
910,056 |
11,5436 |
|
12.54 |
1016,39 |
922,193 |
94,1967 |
|
1.55 |
1055,37 |
1011,33 |
44,0387 |
|
2.55 |
1103,51 |
1080,57 |
22,9416 |
|
3.55 |
1112,47 |
1145,06 |
-32,59 |
|
4.55 |
1119,03 |
1169,31 |
-50,278 |
|
5.55 |
1113,04 |
1173,0 |
-59,9574 |
|
6.55 |
1028,2 |
1157,68 |
-129,48 |
|
7.55 |
1038,78 |
1065,53 |
-26,7467 |
|
8.55 |
1086,43 |
1031,18 |
55,2527 |
|
9.55 |
1105,96 |
1060,21 |
45,7465 |
|
10.55 |
1125,8 |
1091,7 |
34,1021 |
|
11.55 |
1124,88 |
1122,63 |
2,24877 |
|
12.55 |
1162,68 |
1132,92 |
29,7633 |
|
1.56 |
1204,92 |
1168,31 |
36,6143 |
|
2.56 |
1232,24 |
1217,69 |
14,5493 |
|
3.56 |
1138,69 |
1257,7 |
-119,011 |
|
4.56 |
1230,79 |
1183,02 |
47,7688 |
|
5.56 |
1271,72 |
1228,29 |
43,4306 |
|
6.56 |
1307,78 |
1281,32 |
26,4635 |
|
7.56 |
1328,18 |
1330,86 |
-2,67501 |
|
8.56 |
1310,47 |
1362,54 |
-52,0721 |
|
9.56 |
1326,15 |
1350,99 |
-24,8422 |
|
10.56 |
1344,56 |
1351,76 |
-7,20018 |
|
11.56 |
1348,83 |
1362,16 |
-13,333 |
|
12.56 |
1324,74 |
1364,9 |
-40,156 |
|
1.57 |
1347,72 |
1339,49 |
8,23229 |
|
2.57 |
1213,49 |
1346,03 |
-132,536 |
|
3.57 |
1145,62 |
1226,25 |
-80,6308 |
|
4.57 |
1180,98 |
1115,78 |
65,1971 |
|
5.57 |
1181,07 |
1109,59 |
71,4813 |
|
6.57 |
1145,27 |
1119,28 |
25,9946 |
|
7.57 |
995,52 |
1101,71 |
-106,186 |
|
8.57 |
957,73 |
968,505 |
-10,7751 |
|
9.57 |
1030,47 |
889,518 |
140,952 |
|
10.57 |
987,7 |
938,323 |
49,3773 |
|
11.57 |
874,21 |
936,623 |
-62,4135 |
|
12.57 |
749,78 |
845,306 |
-95,5262 |
|
1.58 |
815,25 |
706,331 |
108,919 |
|
2.58 |
788,89 |
722,874 |
66,0159 |
|
3.58 |
688,15 |
724,943 |
-36,7932 |
|
4.58 |
689,85 |
649,98 |
39,8701 |
|
5.58 |
758,83 |
633,533 |
125,297 |
|
6.58 |
813,63 |
703,196 |
110,434 |
|
7.58 |
820,49 |
792,849 |
27,6407 |
|
8.58 |
906,61 |
840,726 |
65,8842 |
|
9.58 |
902,04 |
936,386 |
-34,3461 |
|
10.58 |
941,57 |
966,276 |
-24,7059 |
|
11.58 |
988,37 |
1004,0 |
-15,6253 |
|
12.58 |
1024,29 |
1050,72 |
-26,4261 |
|
1.59 |
1117,68 |
1090,33 |
27,3502 |
|
2.59 |
1125,11 |
1177,62 |
-52,5077 |
|
3.59 |
1142,6 |
1206,12 |
-63,5151 |
|
4.59 |
1196,45 |
1216,96 |
-20,5143 |
|
5.59 |
1193,84 |
1254,38 |
-60,5429 |
|
6.59 |
1163,26 |
1253,54 |
-90,2799 |
|
7.59 |
1141,02 |
1212,34 |
-71,316 |
|
8.59 |
1170,72 |
1164,94 |
5,78163 |
|
9.59 |
1132,32 |
1166,35 |
-34,0301 |
|
10.59 |
1143,91 |
1130,24 |
13,6664 |
|
11.59 |
1120,08 |
1124,78 |
-4,70318 |
|
12.59 |
1128,26 |
1102,47 |
25,7914 |
|
1.60 |
1207,35 |
1102,69 |
104,663 |
|
2.60 |
1148,54 |
1177,08 |
-28,5439 |
|
3.60 |
1163,89 |
1156,78 |
7,10938 |
|
4.60 |
1166,96 |
1160,61 |
6,34873 |
|
5.60 |
1156,66 |
1164,66 |
-7,99902 |
|
6.60 |
1155,66 |
1156,68 |
-1,02206 |
|
7.60 |
1134,28 |
1152,17 |
-17,8901 |
|
8.60 |
1104,87 |
1131,33 |
-26,4606 |
|
9.60 |
1055,55 |
1097,05 |
-41,4992 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1078,06 |
970,336 |
1185,78 |
a=0.5
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's quadratic exp. smoothing with alpha = 0,5
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
57,976 |
22,0444 |
MAE |
43,5112 |
22,0444 |
MAPE |
4,59535 |
2,08843 |
ME |
0,0756742 |
-22,0444 |
MPE |
0,0296536 |
-2,08843 |
Forecast Table for ConsGOODS
Model: Brown's quadratic exp. smoothing with alpha = 0,5
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
783,895 |
29,2755 |
|
2.50 |
877,02 |
785,901 |
91,1195 |
|
3.50 |
844,36 |
896,26 |
-51,9002 |
|
4.50 |
856,69 |
857,72 |
-1,03045 |
|
5.50 |
924,97 |
865,241 |
59,7294 |
|
6.50 |
953,18 |
965,321 |
-12,1406 |
|
7.50 |
892,74 |
1004,46 |
-111,717 |
|
8.50 |
874,46 |
894,653 |
-20,1935 |
|
9.50 |
771,4 |
846,36 |
-74,9603 |
|
10.50 |
785,72 |
694,82 |
90,9001 |
|
11.50 |
829,36 |
727,374 |
101,986 |
|
12.50 |
865,08 |
826,886 |
38,1942 |
|
1.51 |
892,15 |
900,716 |
-8,56586 |
|
2.51 |
947,28 |
939,316 |
7,96384 |
|
3.51 |
948,6 |
1007,33 |
-58,7256 |
|
4.51 |
992,79 |
991,242 |
1,54804 |
|
5.51 |
1017,36 |
1032,49 |
-15,1283 |
|
6.51 |
997,49 |
1053,5 |
-56,0142 |
|
7.51 |
911,97 |
1005,66 |
-93,6915 |
|
8.51 |
837,21 |
861,218 |
-24,0077 |
|
9.51 |
857,42 |
745,955 |
111,465 |
|
10.51 |
798,01 |
799,108 |
-1,09768 |
|
11.51 |
859,33 |
747,226 |
112,104 |
|
12.51 |
849,27 |
858,468 |
-9,19829 |
|
1.52 |
838,65 |
865,842 |
-27,1923 |
|
2.52 |
824,31 |
847,347 |
-23,0368 |
|
3.52 |
820,56 |
821,561 |
-1,00073 |
|
4.52 |
821,28 |
815,023 |
6,25745 |
|
5.52 |
812,44 |
819,213 |
-6,77288 |
|
6.52 |
786,55 |
809,017 |
-22,4675 |
|
7.52 |
804,84 |
771,449 |
33,3906 |
|
8.52 |
834,95 |
801,22 |
33,7299 |
|
9.52 |
863,61 |
854,137 |
9,47348 |
|
10.52 |
816,88 |
897,733 |
-80,8534 |
|
11.52 |
862,39 |
818,929 |
43,461 |
|
12.52 |
839,67 |
873,124 |
-33,4542 |
|
1.53 |
812,22 |
841,604 |
-29,3838 |
|
2.53 |
822,04 |
793,592 |
28,4476 |
|
3.53 |
823,26 |
808,602 |
14,6575 |
|
4.53 |
843,39 |
818,902 |
24,4876 |
|
5.53 |
865,42 |
853,136 |
12,2842 |
|
6.53 |
825,66 |
887,457 |
-61,7972 |
|
7.53 |
850,26 |
822,958 |
27,302 |
|
8.53 |
828,34 |
850,384 |
-22,0436 |
|
9.53 |
783,02 |
821,167 |
-38,1465 |
|
10.53 |
807,71 |
751,574 |
56,1357 |
|
11.53 |
791,73 |
792,352 |
-0,622077 |
|
12.53 |
829,32 |
782,883 |
46,4368 |
|
1.54 |
863,65 |
843,341 |
20,3088 |
|
2.54 |
878,19 |
899,162 |
-20,9722 |
|
3.54 |
894,68 |
913,825 |
-19,1453 |
|
4.54 |
873,43 |
923,57 |
-50,1402 |
|
5.54 |
841,42 |
877,913 |
-36,4929 |
|
6.54 |
923,94 |
818,177 |
105,763 |
|
7.54 |
919,01 |
941,244 |
-22,2338 |
|
8.54 |
919,19 |
943,864 |
-24,6744 |
|
9.54 |
881,18 |
931,596 |
-50,4159 |
|
10.54 |
911,06 |
864,877 |
46,1828 |
|
11.54 |
921,6 |
904,828 |
16,7718 |
|
12.54 |
1016,39 |
928,581 |
87,8086 |
|
1.55 |
1055,37 |
1070,52 |
-15,1531 |
|
2.55 |
1103,51 |
1125,03 |
-21,5196 |
|
3.55 |
1112,47 |
1170,75 |
-58,2785 |
|
4.55 |
1119,03 |
1155,42 |
-36,3922 |
|
5.55 |
1113,04 |
1136,76 |
-23,7194 |
|
6.55 |
1028,2 |
1110,07 |
-81,8697 |
|
7.55 |
1038,78 |
974,074 |
64,7059 |
|
8.55 |
1086,43 |
989,284 |
97,1463 |
|
9.55 |
1105,96 |
1084,19 |
21,7662 |
|
10.55 |
1125,8 |
1129,49 |
-3,69212 |
|
11.55 |
1124,88 |
1155,67 |
-30,7896 |
|
12.55 |
1162,68 |
1143,89 |
18,7855 |
|
1.56 |
1204,92 |
1188,39 |
16,5289 |
|
2.56 |
1232,24 |
1244,74 |
-12,5044 |
|
3.56 |
1138,69 |
1273,45 |
-134,755 |
|
4.56 |
1230,79 |
1114,96 |
115,832 |
|
5.56 |
1271,72 |
1235,29 |
36,4309 |
|
6.56 |
1307,78 |
1310,55 |
-2,77187 |
|
7.56 |
1328,18 |
1355,97 |
-27,792 |
|
8.56 |
1310,47 |
1367,98 |
-57,5052 |
|
9.56 |
1326,15 |
1320,41 |
5,73967 |
|
10.56 |
1344,56 |
1326,96 |
17,6044 |
|
11.56 |
1348,83 |
1350,79 |
-1,95627 |
|
12.56 |
1324,74 |
1354,38 |
-29,6403 |
|
1.57 |
1347,72 |
1313,08 |
34,6374 |
|
2.57 |
1213,49 |
1343,83 |
-130,338 |
|
3.57 |
1145,62 |
1147,24 |
-1,6205 |
|
4.57 |
1180,98 |
1044,46 |
136,523 |
|
5.57 |
1181,07 |
1129,86 |
51,2071 |
|
6.57 |
1145,27 |
1171,67 |
-26,404 |
|
7.57 |
995,52 |
1134,53 |
-139,006 |
|
8.57 |
957,73 |
914,125 |
43,605 |
|
9.57 |
1030,47 |
865,539 |
164,931 |
|
10.57 |
987,7 |
1016,42 |
-28,7223 |
|
11.57 |
874,21 |
990,751 |
-116,541 |
|
12.57 |
749,78 |
822,654 |
-72,874 |
|
1.58 |
815,25 |
639,905 |
175,345 |
|
2.58 |
788,89 |
767,515 |
21,375 |
|
3.58 |
688,15 |
779,255 |
-91,1053 |
|
4.58 |
689,85 |
643,801 |
46,0488 |
|
5.58 |
758,83 |
653,916 |
104,914 |
|
6.58 |
813,63 |
783,644 |
29,9864 |
|
7.58 |
820,49 |
882,2 |
-61,7099 |
|
8.58 |
906,61 |
881,35 |
25,2596 |
|
9.58 |
902,04 |
984,07 |
-82,0298 |
|
10.58 |
941,57 |
956,483 |
-14,9132 |
|
11.58 |
988,37 |
982,89 |
5,48001 |
|
12.58 |
1024,29 |
1033,29 |
-8,9988 |
|
1.59 |
1117,68 |
1068,8 |
48,8776 |
|
2.59 |
1125,11 |
1187,79 |
-62,6794 |
|
3.59 |
1142,6 |
1178,38 |
-35,7822 |
|
4.59 |
1196,45 |
1170,7 |
25,7459 |
|
5.59 |
1193,84 |
1229,04 |
-35,1994 |
|
6.59 |
1163,26 |
1211,35 |
-48,0913 |
|
7.59 |
1141,02 |
1147,23 |
-6,20914 |
|
8.59 |
1170,72 |
1104,77 |
65,9548 |
|
9.59 |
1132,32 |
1154,78 |
-22,4623 |
|
10.59 |
1143,91 |
1109,76 |
34,1543 |
|
11.59 |
1120,08 |
1129,17 |
-9,08752 |
|
12.59 |
1128,26 |
1102,88 |
25,3752 |
|
1.60 |
1207,35 |
1119,3 |
88,0478 |
|
2.60 |
1148,54 |
1245,45 |
-96,9057 |
|
3.60 |
1163,89 |
1160,05 |
3,83752 |
|
4.60 |
1166,96 |
1163,96 |
3,00153 |
|
5.60 |
1156,66 |
1168,24 |
-11,5791 |
|
6.60 |
1155,66 |
1152,13 |
3,52995 |
|
7.60 |
1134,28 |
1149,61 |
-15,3256 |
|
8.60 |
1104,87 |
1119,6 |
-14,7332 |
|
9.60 |
1055,55 |
1077,59 |
-22,0444 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1043,32 |
929,688 |
1156,95 |
a=0.8
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's quadratic exp. smoothing with alpha = 0,8
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
78,2206 |
10,0969 |
MAE |
61,1481 |
10,0969 |
MAPE |
6,44339 |
0,956553 |
ME |
0,329134 |
-10,0969 |
MPE |
0,0693791 |
-0,956553 |
Forecast Table for ConsGOODS
Model: Brown's quadratic exp. smoothing with alpha = 0,8
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
732,226 |
80,9436 |
|
2.50 |
877,02 |
813,206 |
63,8137 |
|
3.50 |
844,36 |
977,135 |
-132,775 |
|
4.50 |
856,69 |
801,865 |
54,8249 |
|
5.50 |
924,97 |
864,672 |
60,2984 |
|
6.50 |
953,18 |
1020,66 |
-67,4821 |
|
7.50 |
892,74 |
988,606 |
-95,8665 |
|
8.50 |
874,46 |
792,59 |
81,8704 |
|
9.50 |
771,4 |
838,254 |
-66,8537 |
|
10.50 |
785,72 |
634,264 |
151,456 |
|
11.50 |
829,36 |
817,869 |
11,4913 |
|
12.50 |
865,08 |
914,135 |
-49,0548 |
|
1.51 |
892,15 |
922,48 |
-30,3302 |
|
2.51 |
947,28 |
922,79 |
24,4904 |
|
3.51 |
948,6 |
1012,53 |
-63,9286 |
|
4.51 |
992,79 |
937,649 |
55,1414 |
|
5.51 |
1017,36 |
1038,9 |
-21,5378 |
|
6.51 |
997,49 |
1042,36 |
-44,8711 |
|
7.51 |
911,97 |
957,077 |
-45,107 |
|
8.51 |
837,21 |
782,652 |
54,558 |
|
9.51 |
857,42 |
735,421 |
121,999 |
|
10.51 |
798,01 |
906,309 |
-108,299 |
|
11.51 |
859,33 |
738,163 |
121,167 |
|
12.51 |
849,27 |
954,708 |
-105,438 |
|
1.52 |
838,65 |
846,499 |
-7,84911 |
|
2.52 |
824,31 |
818,558 |
5,7524 |
|
3.52 |
820,56 |
802,7 |
17,8598 |
|
4.52 |
821,28 |
817,437 |
3,84282 |
|
5.52 |
812,44 |
826,261 |
-13,8215 |
|
6.52 |
786,55 |
802,651 |
-16,1011 |
|
7.52 |
804,84 |
751,581 |
53,2586 |
|
8.52 |
834,95 |
833,533 |
1,41675 |
|
9.52 |
863,61 |
882,55 |
-18,9398 |
|
10.52 |
816,88 |
901,928 |
-85,0478 |
|
11.52 |
862,39 |
743,505 |
118,885 |
|
12.52 |
839,67 |
918,755 |
-79,0845 |
|
1.53 |
812,22 |
811,117 |
1,10265 |
|
2.53 |
822,04 |
768,937 |
53,1028 |
|
3.53 |
823,26 |
838,033 |
-14,7733 |
|
4.53 |
843,39 |
831,107 |
12,2825 |
|
5.53 |
865,42 |
872,863 |
-7,44288 |
|
6.53 |
825,66 |
895,408 |
-69,7478 |
|
7.53 |
850,26 |
764,967 |
85,2927 |
|
8.53 |
828,34 |
879,734 |
-51,3942 |
|
9.53 |
783,02 |
801,53 |
-18,5096 |
|
10.53 |
807,71 |
718,556 |
89,1539 |
|
11.53 |
791,73 |
847,108 |
-55,3777 |
|
12.53 |
829,32 |
779,153 |
50,1669 |
|
1.54 |
863,65 |
883,021 |
-19,3713 |
|
2.54 |
878,19 |
912,806 |
-34,6158 |
|
3.54 |
894,68 |
890,984 |
3,69639 |
|
4.54 |
873,43 |
906,903 |
-33,4732 |
|
5.54 |
841,42 |
835,244 |
6,17556 |
|
6.54 |
923,94 |
790,898 |
133,042 |
|
7.54 |
919,01 |
1042,17 |
-123,164 |
|
8.54 |
919,19 |
916,444 |
2,7461 |
|
9.54 |
881,18 |
906,988 |
-25,8083 |
|
10.54 |
911,06 |
821,78 |
89,2801 |
|
11.54 |
921,6 |
952,143 |
-30,5429 |
|
12.54 |
1016,39 |
942,046 |
74,3442 |
|
1.55 |
1055,37 |
1146,44 |
-91,0741 |
|
2.55 |
1103,51 |
1102,35 |
1,15989 |
|
3.55 |
1112,47 |
1148,59 |
-36,1204 |
|
4.55 |
1119,03 |
1104,79 |
14,24 |
|
5.55 |
1113,04 |
1110,3 |
2,73771 |
|
6.55 |
1028,2 |
1094,86 |
-66,6551 |
|
7.55 |
1038,78 |
904,718 |
134,062 |
|
8.55 |
1086,43 |
1056,32 |
30,1079 |
|
9.55 |
1105,96 |
1169,71 |
-63,746 |
|
10.55 |
1125,8 |
1138,16 |
-12,358 |
|
11.55 |
1124,88 |
1145,47 |
-20,5944 |
|
12.55 |
1162,68 |
1114,58 |
48,0963 |
|
1.56 |
1204,92 |
1207,97 |
-3,04973 |
|
2.56 |
1232,24 |
1259,37 |
-27,1262 |
|
3.56 |
1138,69 |
1260,16 |
-121,475 |
|
4.56 |
1230,79 |
993,924 |
236,866 |
|
5.56 |
1271,72 |
1352,06 |
-80,3406 |
|
6.56 |
1307,78 |
1339,08 |
-31,3 |
|
7.56 |
1328,18 |
1346,21 |
-18,0342 |
|
8.56 |
1310,47 |
1340,63 |
-30,1573 |
|
9.56 |
1326,15 |
1270,83 |
55,3194 |
|
10.56 |
1344,56 |
1338,55 |
6,00621 |
|
11.56 |
1348,83 |
1368,98 |
-20,1459 |
|
12.56 |
1324,74 |
1351,33 |
-26,5857 |
|
1.57 |
1347,72 |
1285,78 |
61,9441 |
|
2.57 |
1213,49 |
1377,57 |
-164,084 |
|
3.57 |
1145,62 |
1028,15 |
117,473 |
|
4.57 |
1180,98 |
1053,44 |
127,54 |
|
5.57 |
1181,07 |
1258,46 |
-77,3857 |
|
6.57 |
1145,27 |
1206,69 |
-61,4164 |
|
7.57 |
995,52 |
1100,12 |
-104,603 |
|
8.57 |
957,73 |
787,831 |
169,899 |
|
9.57 |
1030,47 |
917,9 |
112,57 |
|
10.57 |
987,7 |
1167,42 |
-179,722 |
|
11.57 |
874,21 |
949,403 |
-75,1927 |
|
12.57 |
749,78 |
712,648 |
37,1316 |
|
1.58 |
815,25 |
584,546 |
230,704 |
|
2.58 |
788,89 |
937,255 |
-148,365 |
|
3.58 |
688,15 |
787,106 |
-98,9563 |
|
4.58 |
689,85 |
552,754 |
137,096 |
|
5.58 |
758,83 |
701,045 |
57,7852 |
|
6.58 |
813,63 |
877,662 |
-64,032 |
|
7.58 |
820,49 |
898,507 |
-78,0167 |
|
8.58 |
906,61 |
818,074 |
88,5361 |
|
9.58 |
902,04 |
1010,02 |
-107,979 |
|
10.58 |
941,57 |
882,816 |
58,7544 |
|
11.58 |
988,37 |
976,282 |
12,0883 |
|
12.58 |
1024,29 |
1043,1 |
-18,8113 |
|
1.59 |
1117,68 |
1061,6 |
56,0826 |
|
2.59 |
1125,11 |
1232,54 |
-107,426 |
|
3.59 |
1142,6 |
1117,92 |
24,6838 |
|
4.59 |
1196,45 |
1142,0 |
54,4501 |
|
5.59 |
1193,84 |
1257,81 |
-63,9714 |
|
6.59 |
1163,26 |
1179,49 |
-16,2294 |
|
7.59 |
1141,02 |
1106,34 |
34,6845 |
|
8.59 |
1170,72 |
1104,87 |
65,8465 |
|
9.59 |
1132,32 |
1217,14 |
-84,8241 |
|
10.59 |
1143,91 |
1084,34 |
59,5714 |
|
11.59 |
1120,08 |
1159,04 |
-38,9615 |
|
12.59 |
1128,26 |
1092,03 |
36,226 |
|
1.60 |
1207,35 |
1141,56 |
65,7875 |
|
2.60 |
1148,54 |
1322,54 |
-173,996 |
|
3.60 |
1163,89 |
1063,83 |
100,058 |
|
4.60 |
1166,96 |
1171,96 |
-4,99963 |
|
5.60 |
1156,66 |
1174,15 |
-17,4887 |
|
6.60 |
1155,66 |
1142,08 |
13,5772 |
|
7.60 |
1134,28 |
1153,76 |
-19,475 |
|
8.60 |
1104,87 |
1105,97 |
-1,10419 |
|
9.60 |
1055,55 |
1065,65 |
-10,0969 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1016,63 |
863,324 |
1169,94 |
Оптимизированный вариант: а=0,3531
Forecasting - ConsGOODS
Data variable: ConsGOODS
Number of observations = 129
Start index = 1.50
Sampling interval = 1,0 month(s)
Forecast Summary
Forecast model selected: Brown's quadratic exp. smoothing with alpha = 0,3531
Number of forecasts generated: 1
Number of periods withheld for validation: 1
|
Estimation |
Validation |
Statistic |
Period |
Period |
RMSE |
54,8111 |
35,7051 |
MAE |
41,918 |
35,7051 |
MAPE |
4,41478 |
3,38261 |
ME |
0,0511033 |
-35,7051 |
MPE |
0,0593445 |
-3,38261 |
Forecast Table for ConsGOODS
Model: Brown's quadratic exp. smoothing with alpha = 0,3531
V = withheld for validation
Period |
Data |
Forecast |
Residual |
|
1.50 |
813,17 |
803,298 |
9,87175 |
|
2.50 |
877,02 |
787,931 |
89,0894 |
|
3.50 |
844,36 |
857,167 |
-12,807 |
|
4.50 |
856,69 |
849,218 |
7,47157 |
|
5.50 |
924,97 |
859,314 |
65,6563 |
|
6.50 |
953,18 |
934,628 |
18,552 |
|
7.50 |
892,74 |
985,721 |
-92,9809 |
|
8.50 |
874,46 |
929,615 |
-55,1548 |
|
9.50 |
771,4 |
883,625 |
-112,225 |
|
10.50 |
785,72 |
757,283 |
28,4374 |
|
11.50 |
829,36 |
736,271 |
93,0888 |
|
12.50 |
865,08 |
787,745 |
77,3351 |
|
1.51 |
892,15 |
851,965 |
40,1853 |
|
2.51 |
947,28 |
904,471 |
42,8086 |
|
3.51 |
948,6 |
976,906 |
-28,3057 |
|
4.51 |
992,79 |
993,908 |
-1,11782 |
|
5.51 |
1017,36 |
1034,89 |
-17,5343 |
|
6.51 |
997,49 |
1062,6 |
-65,1083 |
|
7.51 |
911,97 |
1037,82 |
-125,855 |
|
8.51 |
837,21 |
928,054 |
-90,8441 |
|
9.51 |
857,42 |
809,134 |
48,2864 |
|
10.51 |
798,01 |
798,912 |
-0,902233 |
|
11.51 |
859,33 |
745,944 |
113,386 |
|
12.51 |
849,27 |
807,128 |
42,1421 |
|
1.52 |
838,65 |
828,638 |
10,0121 |
|
2.52 |
824,31 |
830,251 |
-5,94118 |
|
3.52 |
820,56 |
818,941 |
1,61885 |
|
4.52 |
821,28 |
814,089 |
7,19091 |
|
5.52 |
812,44 |
816,155 |
-3,71533 |
|
6.52 |
786,55 |
809,84 |
-23,2898 |
|
7.52 |
804,84 |
782,198 |
22,6425 |
|
8.52 |
834,95 |
795,135 |
39,8154 |
|
9.52 |
863,61 |
834,341 |
29,2686 |
|
10.52 |
816,88 |
877,875 |
-60,9945 |
|
11.52 |
862,39 |
839,098 |
23,2915 |
|
12.52 |
839,67 |
870,44 |
-30,7698 |
|
1.53 |
812,22 |
854,188 |
-41,9681 |
|
2.53 |
822,04 |
816,553 |
5,48745 |
|
3.53 |
823,26 |
814,122 |
9,13804 |
|
4.53 |
843,39 |
816,396 |
26,9937 |
|
5.53 |
865,42 |
840,03 |
25,3899 |
|
6.53 |
825,66 |
871,491 |
-45,8309 |
|
7.53 |
850,26 |
837,622 |
12,638 |
|
8.53 |
828,34 |
850,282 |
-21,942 |
|
9.53 |
783,02 |
830,756 |
-47,7363 |
|
10.53 |
807,71 |
775,974 |
31,7364 |
|
11.53 |
791,73 |
786,829 |
4,90076 |
|
12.53 |
829,32 |
778,335 |
50,9849 |
|
1.54 |
863,65 |
819,095 |
44,5553 |
|
2.54 |
878,19 |
870,933 |
7,25676 |
|
3.54 |
894,68 |
900,991 |
-6,31092 |
|
4.54 |
873,43 |
922,416 |
-48,9863 |
|
5.54 |
841,42 |
899,62 |
-58,2001 |
|
6.54 |
923,94 |
851,808 |
72,1318 |
|
7.54 |
919,01 |
921,198 |
-2,18843 |
|
8.54 |
919,19 |
937,19 |
-17,9997 |
|
9.54 |
881,18 |
937,138 |
-55,9575 |
|
10.54 |
911,06 |
891,572 |
19,4883 |
|
11.54 |
921,6 |
905,631 |
15,9695 |
|
12.54 |
1016,39 |
921,423 |
94,9671 |
|
1.55 |
1055,37 |
1025,9 |
29,4696 |
|
2.55 |
1103,51 |
1096,25 |
7,25955 |
|
3.55 |
1112,47 |
1158,01 |
-45,5398 |
|
4.55 |
1119,03 |
1171,77 |
-52,7351 |
|
5.55 |
1113,04 |
1166,4 |
-53,3553 |
|
6.55 |
1028,2 |
1144,17 |
-115,969 |
|
7.55 |
1038,78 |
1036,86 |
1,91664 |
|
8.55 |
1086,43 |
1009,91 |
76,5179 |
|
9.55 |
1105,96 |
1056,45 |
49,5075 |
|
10.55 |
1125,8 |
1096,84 |
28,9645 |
|
11.55 |
1124,88 |
1131,18 |
-6,29772 |
|
12.55 |
1162,68 |
1138,38 |
24,2973 |
|
1.56 |
1204,92 |
1176,3 |
28,6212 |
|
2.56 |
1232,24 |
1228,26 |
3,97656 |
|
3.56 |
1138,69 |
1266,28 |
-127,587 |
|
4.56 |
1230,79 |
1169,12 |
61,6673 |
|
5.56 |
1271,72 |
1227,61 |
44,1122 |
|
6.56 |
1307,78 |
1287,83 |
19,9493 |
|
7.56 |
1328,18 |
1338,94 |
-10,7603 |
|
8.56 |
1310,47 |
1366,91 |
-56,4358 |
|
9.56 |
1326,15 |
1345,27 |
-19,1156 |
|
10.56 |
1344,56 |
1344,38 |
0,181173 |
|
11.56 |
1348,83 |
1356,63 |
-7,79795 |
|
12.56 |
1324,74 |
1359,5 |
-34,7558 |
|
1.57 |
1347,72 |
1329,9 |
17,8183 |
|
2.57 |
1213,49 |
1341,67 |
-128,177 |
|
3.57 |
1145,62 |
1202,58 |
-56,9623 |
|
4.57 |
1180,98 |
1088,91 |
92,0657 |
|
5.57 |
1181,07 |
1104,08 |
76,9851 |
|
6.57 |
1145,27 |
1127,49 |
17,7816 |
|
7.57 |
995,52 |
1110,8 |
-115,278 |
|
8.57 |
957,73 |
957,022 |
0,707667 |
|
9.57 |
1030,47 |
880,989 |
149,481 |
|
10.57 |
987,7 |
955,737 |
31,9626 |
|
11.57 |
874,21 |
954,863 |
-80,6533 |
|
12.57 |
749,78 |
846,184 |
-96,4041 |
|
1.58 |
815,25 |
691,594 |
123,656 |
|
2.58 |
788,89 |
731,444 |
57,4456 |
|
3.58 |
688,15 |
740,556 |
-52,4064 |
|
4.58 |
689,85 |
653,379 |
36,471 |
|
5.58 |
758,83 |
641,866 |
116,964 |
|
6.58 |
813,63 |
728,073 |
85,5571 |
|
7.58 |
820,49 |
825,177 |
-4,68681 |
|
8.58 |
906,61 |
864,254 |
42,3563 |
|
9.58 |
902,04 |
960,744 |
-58,7035 |
|
10.58 |
941,57 |
975,15 |
-33,5805 |
|
11.58 |
988,37 |
1005,2 |
-16,8345 |
|
12.58 |
1024,29 |
1048,84 |
-24,5543 |
|
1.59 |
1117,68 |
1084,94 |
32,7413 |
|
2.59 |
1125,11 |
1178,73 |
-53,6198 |
|
3.59 |
1142,6 |
1198,39 |
-55,7918 |
|
4.59 |
1196,45 |
1202,25 |
-5,79531 |
|
5.59 |
1193,84 |
1242,38 |
-48,5394 |
|
6.59 |
1163,26 |
1236,8 |
-73,5384 |
|
7.59 |
1141,02 |
1188,06 |
-47,0366 |
|
8.59 |
1170,72 |
1139,22 |
31,4987 |
|
9.59 |
1132,32 |
1152,09 |
-19,7668 |
|
10.59 |
1143,91 |
1116,46 |
27,4504 |
|
11.59 |
1120,08 |
1118,87 |
1,20618 |
|
12.59 |
1128,26 |
1098,3 |
29,9573 |
|
1.60 |
1207,35 |
1104,39 |
102,955 |
|
2.60 |
1148,54 |
1194,83 |
-46,288 |
|
3.60 |
1163,89 |
1162,81 |
1,08485 |
|
4.60 |
1166,96 |
1165,31 |
1,64858 |
|
5.60 |
1156,66 |
1168,44 |
-11,7834 |
|
6.60 |
1155,66 |
1157,63 |
-1,97405 |
|
7.60 |
1134,28 |
1152,55 |
-18,2714 |
|
8.60 |
1104,87 |
1128,69 |
-23,821 |
|
9.60 |
1055,55 |
1091,26 |
-35,7051 |
V |
|
|
Lower 95,0% |
Upper 95,0% |
Period |
Forecast |
Limit |
Limit |
10.60 |
1068,48 |
961,468 |
1175,48 |
Приложение 7
Проверка гипотезы о наличии тенденции во временном ряде
Summary Statistics for ConsGOODS
|
flag=2=0 |
flag=2=1 |
Count |
62 |
62 |
Average |
871,099 |
1093,48 |
Standard deviation |
69,0502 |
168,695 |
Coeff. of variation |
7,92679% |
15,4273% |
Minimum |
771,4 |
688,15 |
Maximum |
1103,51 |
1348,83 |
Range |
332,11 |
660,68 |
Stnd. skewness |
4,11262 |
-2,35981 |
Stnd. kurtosis |
2,68574 |
-0,013362 |
Comparison of Standard Deviations for ConsGOODS
|
flag=2=0 |
flag=2=1 |
Standard deviation |
69,0502 |
168,695 |
Variance |
4767,94 |
28457,9 |
Df |
61 |
61 |
Ratio of Variances = 0,167543
95,0% Confidence Intervals
Standard deviation of flag=2=0: [58,6762; 83,9148]
Standard deviation of flag=2=1: [143,35; 205,01]
Ratio of Variances: [0,10095; 0,278066]
F-test to Compare Standard Deviations
Null hypothesis: sigma1 = sigma2
Alt. hypothesis: sigma1 NE sigma2
F = 0,167543 P-value = 5,53402E-11
Reject the null hypothesis for alpha = 0,05.
Comparison of Means for ConsGOODS
95,0% confidence interval for mean of flag=2=0: 871,099 +/- 17,5355 [853,564; 888,635]
95,0% confidence interval for mean of flag=2=1: 1093,48 +/- 42,8405 [1050,64; 1136,32]
95,0% confidence interval for the difference between the means
not assuming equal variances: -222,382 +/- 46,0614 [-268,444; -176,321]
t test to compare means
Null hypothesis: mean1 = mean2
Alt. hypothesis: mean1 NE mean2
not assuming equal variances: t = -9,60635 P-value = 0,0
Reject the null hypothesis for alpha = 0,05.
Приложение 8
Построение моделей тренда
Сравнение моделей
Comparison of Alternative Models
Model |
Correlation |
R-Squared |
Linear |
0,5337 |
28,48% |
Squared-Y |
0,5336 |
28,48% |
Square root-Y |
0,5309 |
28,18% |
Exponential |
0,5262 |
27,69% |
Squared-Y square root-X |
0,5236 |
27,42% |
Square root-X |
0,5223 |
27,28% |
Double square root |
0,5191 |
26,94% |
Logarithmic-Y square root-X |
0,5140 |
26,42% |
Reciprocal-Y |
-0,5110 |
26,12% |
Squared-X |
0,4989 |
24,89% |
Square root-Y squared-X |
0,4975 |
24,75% |
Double squared |
0,4962 |
24,62% |
Logarithmic-Y squared-X |
0,4942 |
24,42% |
Reciprocal-Y squared-X |
-0,4816 |
23,20% |
Squared-Y logarithmic-X |
0,4658 |
21,70% |
Logarithmic-X |
0,4637 |
21,51% |
Square root-Y logarithmic-X |
0,4604 |
21,20% |
Multiplicative |
0,4556 |
20,75% |
Reciprocal-X |
-0,2204 |
4,86% |
Squared-Y reciprocal-X |
-0,2198 |
4,83% |
S-curve model |
-0,2183 |
4,76% |
Double reciprocal |
0,2133 |
4,55% |
Reciprocal-Y square root-X |
<no fit> |
|
Reciprocal-Y logarithmic-X |
<no fit> |
|
Square root-Y reciprocal-X |
<no fit> |
|
Logistic |
<no fit> |
|
Log probit |
<no fit> |
|
Модель линейного тренда с константой
Simple Regression - ConsGOODS vs. num (num<125)
Dependent variable: ConsGOODS
Independent variable: num
Selection variable: num<125
Linear model: Y = a + b*X
Coefficients
|
Least Squares |
Standard |
T |
|
Resistant |
Parameter |
Estimate |
Error |
Statistic |
P-Value |
Estimate |
Intercept |
824,41 |
26,1039 |
31,5819 |
0,0000 |
815,293 |
Slope |
2,52608 |
0,362432 |
6,96981 |
0,0000 |
3,04355 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,01379E6 |
1 |
1,01379E6 |
48,58 |
0,0000 |
Residual |
2,54606E6 |
122 |
20869,3 |
|
|
Total (Corr.) |
3,55985E6 |
123 |
|
|
|
Correlation Coefficient = 0,533653
R-squared = 28,4786 percent
R-squared (adjusted for d.f.) = 27,8923 percent
Standard Error of Est. = 144,462
Mean absolute error = 111,967
Durbin-Watson statistic = 0,110215 (P=0,0000)
Lag 1 residual autocorrelation = 0,944686
Half-slope = 0,384949
ConsGOODS = 824,41 + 2,52608*num
Линейно-логарифмическая функция 2-го порядка:
Multiple Regression - (ConsGOODS) (num<125)
Dependent variable: (ConsGOODS)
Independent variables:
log(num)
2*log(num)^2
Selection variable: num<125
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
CONSTANT |
951,229 |
100,77 |
9,43958 |
0,0000 |
log(num) |
-136,183 |
64,9837 |
-2,09565 |
0,0382 |
2*log(num)^2 |
17,7058 |
5,10025 |
3,47155 |
0,0007 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,01868E6 |
2 |
509339, |
24,25 |
0,0000 |
Residual |
2,54117E6 |
121 |
21001,4 |
|
|
Total (Corr.) |
3,55985E6 |
123 |
|
|
|
R-squared = 28,6157 percent
R-squared (adjusted for d.f.) = 27,4358 percent
Standard Error of Est. = 144,919
Mean absolute error = 113,994
Durbin-Watson statistic = 0,117019 (P=0,0000)
Lag 1 residual autocorrelation = 0,93726
Stepwise regression
Method: backward selection
F-to-enter: 4,0
F-to-remove: 4,0
Step 0:
2 variables in the model. 121 d.f. for error.
R-squared = 28,62% Adjusted R-squared = 27,44% MSE = 21001,4
Final model selected.
The StatAdvisor
The output shows the results of fitting a multiple linear regression model to describe the relationship between (ConsGOODS) and 2 independent variables. The equation of the fitted model is
(ConsGOODS) = 951,229 - 136,183*log(num) + 17,7058*2*log(num)^2
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
CL for Mean |
CL for Mean |
125 |
1119,23 |
146,98 |
828,247 |
1410,22 |
1070,67 |
1167,79 |
126 |
1120,87 |
147,02 |
829,809 |
1411,94 |
1071,84 |
1169,91 |
127 |
1122,51 |
147,061 |
831,361 |
1413,66 |
1072,99 |
1172,03 |
128 |
1124,13 |
147,103 |
832,904 |
1415,36 |
1074,14 |
1174,13 |
129 |
1125,75 |
147,144 |
834,438 |
1417,06 |
1075,28 |
1176,22 |
130 |
1127,36 |
147,186 |
835,963 |
1418,75 |
1076,41 |
1178,31 |
Парабола третьего порядка:
Multiple Regression - ConsGOODS (num<125)
Dependent variable: ConsGOODS
Independent variables:
(num)
num^2
num^3
Selection variable: num<125
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
CONSTANT |
829,366 |
25,6645 |
32,3157 |
0,0000 |
num^2 |
0,0739677 |
0,0166027 |
4,45515 |
0,0000 |
num^3 |
-0,000476454 |
0,000140127 |
-3,40016 |
0,0009 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,11925E6 |
2 |
559623, |
27,74 |
0,0000 |
Residual |
2,4406E6 |
121 |
20170,3 |
|
|
Total (Corr.) |
3,55985E6 |
123 |
|
|
|
R-squared = 31,4408 percent
R-squared (adjusted for d.f.) = 30,3076 percent
Standard Error of Est. = 142,022
Mean absolute error = 111,399
Durbin-Watson statistic = 0,115369 (P=0,0000)
Lag 1 residual autocorrelation = 0,939841
Stepwise regression
Method: backward selection
F-to-enter: 4,0
F-to-remove: 4,0
Step 0:
3 variables in the model. 120 d.f. for error.
R-squared = 32,10% Adjusted R-squared = 30,40% MSE = 20143,1
Step 1:
Removing variable (num) with F-to-remove =1,16343
2 variables in the model. 121 d.f. for error.
R-squared = 31,44% Adjusted R-squared = 30,31% MSE = 20170,3
Final model selected.
ConsGOODS = 829,366 + 0,0739677*num^2 - 0,000476454*num^3
Regression Results for ConsGOODS
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
CL for Mean |
CL for Mean |
125 |
1054,54 |
149,613 |
758,337 |
1350,73 |
961,387 |
1147,68 |
126 |
1050,59 |
150,354 |
752,923 |
1348,25 |
952,876 |
1148,3 |
127 |
1046,43 |
151,156 |
747,175 |
1345,68 |
943,978 |
1148,88 |
128 |
1042,05 |
152,024 |
741,083 |
1343,03 |
934,69 |
1149,42 |
129 |
1037,46 |
152,959 |
734,638 |
1340,29 |
925,011 |
1149,91 |
130 |
1032,65 |
153,966 |
727,833 |
1337,47 |
914,937 |
1150,36 |
Логистическая функция: , где
Multiple Regression - ConsGOODS (num<125)
Dependent variable: ConsGOODS
Independent variables:
1/(1+0.55*exp(-0.013*num))
Selection variable: num<125
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1/(1+0.55*exp(-0.013*num)) |
1237,5 |
16,1446 |
76,6508 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,2068E8 |
1 |
1,2068E8 |
5875,34 |
0,0000 |
Residual |
2,52644E6 |
123 |
20540,2 |
|
|
Total |
1,23207E8 |
124 |
|
|
|
R-squared = 97,9494 percent
R-squared (adjusted for d.f.) = 97,9494 percent
Standard Error of Est. = 143,318
Mean absolute error = 114,351
Durbin-Watson statistic = 0,111105
Lag 1 residual autocorrelation = 0,943892
Stepwise regression
Method: backward selection
F-to-enter: 4,0
F-to-remove: 4,0
Final model selected.
ConsGOODS = 1237,5*1/(1+0.55*exp(-0.013*num))
Regression Results for ConsGOODS
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
CL for Mean |
CL for Mean |
125 |
1116,57 |
144,057 |
831,417 |
1401,72 |
1087,73 |
1145,4 |
126 |
1117,98 |
144,059 |
832,825 |
1403,14 |
1089,11 |
1146,85 |
127 |
1119,38 |
144,06 |
834,217 |
1404,54 |
1090,47 |
1148,28 |
128 |
1120,76 |
144,062 |
835,595 |
1405,92 |
1091,82 |
1149,7 |
129 |
1122,13 |
144,064 |
836,959 |
1407,29 |
1093,15 |
1151,1 |
130 |
1123,48 |
144,066 |
838,308 |
1408,65 |
1094,47 |
1152,49 |
Первая функция Торнквиста: , где
Multiple Regression - (ConsGOODS) (num<125)
Dependent variable: (ConsGOODS)
Independent variables:
num/(0.85+num)
Selection variable: num<125
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
num/(0.85+num) |
1012,93 |
15,2086 |
66,6023 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,19883E8 |
1 |
1,19883E8 |
4435,87 |
0,0000 |
Residual |
3,32417E6 |
123 |
27025,7 |
|
|
Total |
1,23207E8 |
124 |
|
|
|
R-squared = 97,302 percent
R-squared (adjusted for d.f.) = 97,302 percent
Standard Error of Est. = 164,395
Mean absolute error = 142,836
Durbin-Watson statistic = 0,0900128
Lag 1 residual autocorrelation = 0,940484
Stepwise regression
Method: backward selection
F-to-enter: 4,0
F-to-remove: 4,0
Step 0:
1 variables in the model. 123 d.f. for error.
R-squared = 97,30% Adjusted R-squared = 97,28% MSE = 27025,7
Final model selected.
The StatAdvisor
The output shows the results of fitting a multiple linear regression model to describe the relationship between (ConsGOODS) and 1 independent variables. The equation of the fitted model is
(ConsGOODS) = 1012,93*num/(0.85+num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
CL for Mean |
CL for Mean |
125 |
1006,09 |
165,088 |
679,307 |
1332,87 |
976,187 |
1035,99 |
126 |
1006,14 |
165,088 |
679,361 |
1332,92 |
976,24 |
1036,05 |
127 |
1006,2 |
165,088 |
679,414 |
1332,98 |
976,291 |
1036,1 |
128 |
1006,25 |
165,088 |
679,466 |
1333,03 |
976,342 |
1036,15 |
129 |
1006,3 |
165,088 |
679,517 |
1333,08 |
976,392 |
1036,21 |
130 |
1006,35 |
165,088 |
679,568 |
1333,13 |
976,441 |
1036,26 |
Кривая Гомперца: , где
Multiple Regression - (ConsGOODS) (num<125)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num<125
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
832,081 |
10,9289 |
76,1357 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,20647E8 |
1 |
1,20647E8 |
5796,65 |
0,0000 |
Residual |
2,56002E6 |
123 |
20813,2 |
|
|
Total |
1,23207E8 |
124 |
|
|
|
R-squared = 97,9222 percent
R-squared (adjusted for d.f.) = 97,9222 percent
Standard Error of Est. = 144,268
Mean absolute error = 111,305
Durbin-Watson statistic =
Lag 1 residual autocorrelation = 0,945027
Stepwise regression
Method: backward selection
F-to-enter: 4,0
F-to-remove: 4,0
Step 0:
1 variables in the model. 123 d.f. for error.
R-squared = 97,92% Adjusted R-squared = 97,91% MSE = 20813,2
Final model selected.
(ConsGOODS) = 832,081*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
CL for Mean |
CL for Mean |
125 |
1149,52 |
145,056 |
862,387 |
1436,65 |
1119,63 |
1179,4 |
126 |
1152,49 |
145,06 |
865,355 |
1439,63 |
1122,53 |
1182,46 |
127 |
1155,48 |
145,064 |
868,33 |
1442,62 |
1125,43 |
1185,52 |
128 |
1158,47 |
145,068 |
871,313 |
1445,62 |
1128,35 |
1188,59 |
129 |
1161,47 |
145,072 |
874,304 |
1448,63 |
1131,27 |
1191,66 |
130 |
1164,47 |
145,076 |
877,302 |
1451,64 |
1134,2 |
1194,75 |
Приложение 9
Остатки по моделям тренда
период |
Остатки для модели тренда |
|||||
линейного тренда |
Линейно-логарифмическая функция 2-го порядка |
Парабола третьего порядка |
Логистическая функция |
Первая функция Торнквиста |
Кривая Гомперца |
|
вид модели |
Y = a + b* t |
Y = a + b* log(t)+c*log^2(t) |
Y = a + b* t^2+c*t^3 |
Y = a/(1+b*e^(-c*t)) |
Y = a*t/(b+t) |
Y = a*b^(c*t) |
Y = 824,41 + 2,52608*t |
Y= 951,229 - 136,183*log(t) + 17,7058*2*log(t)^2 |
Y = 829,366 + 0,0739677*t^2 - 0,000476454*t^3 |
Y= 1237,5*1/(1+0.55*exp(-0.013*t)) |
Y = 1012,93*t/(0.85+t) |
Y= 832,081*1.09^(0.03*t) |
|
1 |
-13,7665 |
-138,059 |
-16,2691 |
11,1099 |
265,64 |
-21,0652 |
2 |
47,5575 |
3,17168 |
47,3623 |
71,2982 |
166,192 |
40,6252 |
3 |
12,3714 |
0,00269228 |
14,3416 |
34,9908 |
55,064 |
5,80008 |
4 |
22,1753 |
26,1956 |
26,1714 |
43,6879 |
21,2839 |
15,9593 |
5 |
87,9292 |
101,192 |
93,8148 |
108,35 |
59,2179 |
82,0629 |
6 |
113,613 |
132,272 |
121,254 |
132,957 |
65,9421 |
108,091 |
7 |
50,647 |
72,4217 |
59,9134 |
68,9291 |
-10,5096 |
45,4633 |
8 |
29,841 |
53,2923 |
40,6044 |
47,0768 |
-41,1829 |
24,9899 |
9 |
-75,7451 |
-51,5651 |
-63,6096 |
-59,54 |
-154,12 |
-80,2691 |
10 |
-63,9512 |
-39,6856 |
-50,5659 |
-48,7609 |
-147,856 |
-68,1538 |
11 |
-22,8373 |
1,06951 |
-8,32152 |
-8,64581 |
-110,913 |
-26,7242 |
12 |
10,3566 |
33,594 |
25,8864 |
23,5655 |
-80,8468 |
6,77971 |
13 |
34,9006 |
57,2509 |
51,3306 |
47,1432 |
-58,6145 |
31,6279 |
14 |
87,5045 |
108,816 |
104,724 |
98,7974 |
-7,67077 |
84,5302 |
15 |
86,2984 |
106,468 |
104,2 |
96,6584 |
-10,0088 |
83,6169 |
16 |
127,962 |
146,922 |
146,44 |
137,406 |
30,9574 |
125,568 |
17 |
150,006 |
167,713 |
168,959 |
158,551 |
52,6648 |
147,893 |
18 |
127,61 |
144,042 |
146,938 |
135,273 |
30,236 |
125,772 |
19 |
39,5641 |
54,7139 |
59,1701 |
46,363 |
-57,5851 |
37,9954 |
20 |
-37,722 |
-23,8504 |
-17,931 |
-31,7699 |
-134,425 |
-39,0271 |
21 |
-20,0381 |
-7,43201 |
-0,152903 |
-14,9151 |
-116,105 |
-21,0854 |
22 |
-81,9742 |
-70,6142 |
-62,0827 |
-77,6625 |
-177,24 |
-82,7695 |
23 |
-23,1802 |
-13,0419 |
-3,36748 |
-19,6619 |
-117,5 |
-23,7296 |
24 |
-35,7663 |
-26,8212 |
-16,1145 |
-33,0232 |
-129,012 |
-36,0755 |
25 |
-48,9124 |
-41,1291 |
-29,5008 |
-46,9263 |
-140,973 |
-48,9874 |
26 |
-65,7785 |
-59,1236 |
-46,6836 |
-64,531 |
-156,553 |
-65,6252 |
27 |
-72,0546 |
-66,493 |
-53,35 |
-71,5273 |
-161,455 |
-71,679 |
28 |
-73,8606 |
-69,3562 |
-55,6171 |
-74,035 |
-161,806 |
-73,2687 |
29 |
-85,2267 |
-81,7424 |
-67,5122 |
-86,0839 |
-171,646 |
-84,4244 |
30 |
-113,643 |
-111,141 |
-96,5223 |
-115,164 |
-198,471 |
-112,636 |
31 |
-97,8789 |
-96,3224 |
-81,4145 |
-100,045 |
-181,057 |
-96,6738 |
32 |
-70,295 |
-69,646 |
-54,5461 |
-73,0876 |
-151,77 |
-68,8975 |
33 |
-44,161 |
-44,382 |
-29,1841 |
-47,5607 |
-123,884 |
-42,5773 |
34 |
-93,4171 |
-94,4707 |
-79,2657 |
-97,4047 |
-171,344 |
-91,6531 |
35 |
-50,4332 |
-52,2824 |
-37,158 |
-54,9893 |
-126,523 |
-48,495 |
36 |
-75,6793 |
-78,2876 |
-63,3283 |
-80,7846 |
-149,895 |
-73,573 |
37 |
-105,655 |
-108,987 |
-94,2735 |
-111,291 |
-177,962 |
-103,387 |
38 |
-98,3614 |
-102,38 |
-87,9909 |
-104,507 |
-168,728 |
-95,9373 |
39 |
-99,6675 |
-104,339 |
-90,3477 |
-106,304 |
-168,064 |
-97,0936 |
40 |
-82,0636 |
-87,3525 |
-73,8308 |
-89,1709 |
-148,463 |
-79,3461 |
41 |
-62,5597 |
-68,4325 |
-55,4476 |
-70,1184 |
-126,937 |
-59,7048 |
42 |
-104,846 |
-111,269 |
-98,8851 |
-112,836 |
-167,177 |
-101,86 |
43 |
-82,7718 |
-89,7132 |
-77,9904 |
-91,174 |
-143,035 |
-79,6607 |
44 |
-107,218 |
-114,645 |
-103,641 |
-116,012 |
-165,393 |
-103,988 |
45 |
-155,064 |
-162,946 |
-152,713 |
-164,23 |
-211,132 |
-151,721 |
46 |
-132,9 |
-141,205 |
-131,795 |
-142,418 |
-186,842 |
-129,451 |
47 |
-151,406 |
-160,104 |
-151,563 |
-161,257 |
-203,206 |
-147,857 |
48 |
-116,342 |
-125,404 |
-117,775 |
-126,505 |
-165,985 |
-112,699 |
49 |
-84,5383 |
-93,9338 |
-87,2576 |
-94,9933 |
-132,008 |
-80,808 |
50 |
-72,5244 |
-82,2255 |
-76,538 |
-83,2515 |
-117,808 |
-68,7129 |
51 |
-58,5605 |
-68,5392 |
-63,8734 |
-69,5396 |
-101,645 |
-54,6742 |
52 |
-82,3366 |
-92,5654 |
-88,9509 |
-93,5476 |
-123,209 |
-78,3817 |
53 |
-116,873 |
-127,325 |
-124,788 |
-128,296 |
-155,521 |
-112,856 |
54 |
-36,8787 |
-47,5275 |
-46,091 |
-48,4933 |
-73,2927 |
-32,806 |
55 |
-44,3348 |
-55,1544 |
-54,8378 |
-56,121 |
-78,5038 |
-40,2127 |
56 |
-46,6809 |
-57,646 |
-58,4653 |
-58,6186 |
-78,595 |
-42,5158 |
57 |
-87,217 |
-98,3026 |
-100,271 |
-99,286 |
-116,867 |
-83,0153 |
58 |
-59,863 |
-71,0449 |
-74,1709 |
-72,0433 |
-87,2397 |
-55,6313 |
59 |
-51,8491 |
-63,1032 |
-67,3934 |
-64,1205 |
-76,9441 |
-47,5938 |
60 |
40,4148 |
29,112 |
23,6549 |
28,0724 |
17,6095 |
44,6873 |
61 |
76,8687 |
65,5403 |
58,9167 |
64,4754 |
56,3607 |
81,1519 |
62 |
122,483 |
111,151 |
103,365 |
110,058 |
104,279 |
126,77 |
63 |
128,917 |
117,604 |
108,663 |
116,482 |
113,025 |
133,201 |
64 |
132,95 |
121,679 |
111,592 |
120,525 |
119,377 |
137,226 |
65 |
124,434 |
113,225 |
102,007 |
112,038 |
113,185 |
128,695 |
66 |
37,0683 |
25,9424 |
13,6099 |
24,7209 |
28,1495 |
41,3067 |
67 |
45,1222 |
34,1002 |
20,6733 |
32,844 |
38,5397 |
49,332 |
68 |
90,2462 |
79,3482 |
64,8503 |
78,0569 |
86,0054 |
94,4206 |
69 |
107,25 |
96,4961 |
80,9538 |
95,1697 |
105,356 |
111,383 |
70 |
124,564 |
113,973 |
97,4166 |
112,612 |
125,022 |
128,648 |
71 |
121,118 |
110,71 |
93,1715 |
109,315 |
123,933 |
125,147 |
72 |
156,392 |
146,185 |
127,702 |
144,757 |
161,569 |
160,359 |
73 |
196,106 |
186,119 |
166,729 |
184,659 |
203,649 |
200,004 |
74 |
220,9 |
211,151 |
190,898 |
209,66 |
230,813 |
224,723 |
75 |
124,824 |
115,331 |
94,2603 |
113,811 |
137,111 |
128,564 |
76 |
214,398 |
205,179 |
183,339 |
203,632 |
229,064 |
218,05 |
77 |
252,801 |
243,873 |
221,317 |
242,302 |
269,85 |
256,358 |
78 |
286,335 |
277,715 |
254,497 |
276,122 |
305,769 |
289,79 |
79 |
304,209 |
295,913 |
272,093 |
294,301 |
326,033 |
307,554 |
80 |
283,973 |
276,018 |
251,656 |
274,389 |
308,189 |
287,202 |
81 |
297,127 |
289,529 |
264,69 |
287,886 |
323,739 |
300,233 |
82 |
313,011 |
305,786 |
280,537 |
304,133 |
342,022 |
315,988 |
83 |
314,755 |
307,918 |
282,331 |
306,258 |
346,168 |
317,595 |
84 |
288,139 |
281,706 |
255,855 |
280,043 |
321,957 |
290,835 |
85 |
308,593 |
302,579 |
276,54 |
300,916 |
344,819 |
311,139 |
86 |
171,837 |
166,257 |
140,111 |
164,599 |
210,474 |
174,226 |
87 |
101,441 |
96,3097 |
70,1396 |
94,6601 |
142,491 |
103,665 |
88 |
134,275 |
129,607 |
103,499 |
127,97 |
177,74 |
136,328 |
89 |
131,838 |
127,648 |
101,692 |
126,029 |
177,723 |
133,714 |
90 |
93,5124 |
89,8131 |
64,1013 |
88,2156 |
141,817 |
95,2024 |
91 |
-58,7637 |
-61,9579 |
-87,3298 |
-63,5289 |
-8,03605 |
-57,2659 |
92 |
-99,0798 |
-101,755 |
-126,689 |
-103,295 |
-45,927 |
-97,7812 |
93 |
-28,8658 |
-31,0094 |
-55,4027 |
-32,5129 |
26,7142 |
-27,7736 |
94 |
-74,1619 |
-75,7602 |
-99,5087 |
-77,2225 |
-16,1525 |
-73,283 |
95 |
-190,178 |
-191,218 |
-214,214 |
-192,634 |
-129,737 |
-189,52 |
96 |
-317,134 |
-317,603 |
-339,735 |
-318,968 |
-254,26 |
-316,703 |
97 |
-254,19 |
-254,076 |
-275,231 |
-255,383 |
-188,881 |
-253,994 |
98 |
-283,076 |
-282,366 |
-302,426 |
-283,611 |
-215,33 |
-283,122 |
99 |
-386,342 |
-385,023 |
-403,87 |
-386,201 |
-316,157 |
-386,637 |
100 |
-387,168 |
-385,229 |
-402,738 |
-386,334 |
-314,543 |
-387,719 |
101 |
-320,714 |
-318,143 |
-334,189 |
-319,169 |
-245,646 |
-321,529 |
102 |
-268,441 |
-265,225 |
-279,678 |
-266,166 |
-190,929 |
-269,525 |
103 |
-264,107 |
-260,235 |
-272,964 |
-261,086 |
-184,149 |
-265,469 |
104 |
-180,513 |
-175,974 |
-186,844 |
-176,729 |
-98,1083 |
-182,161 |
105 |
-187,609 |
-182,392 |
-191,264 |
-183,045 |
-102,756 |
-189,549 |
106 |
-150,605 |
-144,699 |
-151,432 |
-145,244 |
-63,302 |
-152,845 |
107 |
-106,331 |
-99,7244 |
-104,175 |
-100,156 |
-16,5767 |
-108,878 |
108 |
-72,9371 |
-65,6192 |
-67,6394 |
-65,931 |
19,27 |
-75,7984 |
109 |
17,9269 |
25,9667 |
26,5265 |
25,7807 |
112,588 |
14,7439 |
110 |
22,8308 |
31,6031 |
34,8961 |
31,5489 |
119,947 |
19,3187 |
111 |
37,7947 |
47,3099 |
53,4923 |
47,3936 |
137,368 |
33,9462 |
112 |
89,1186 |
99,387 |
108,618 |
99,6147 |
191,15 |
84,9262 |
113 |
83,9825 |
95,0142 |
107,456 |
95,3921 |
188,473 |
79,4389 |
114 |
50,8765 |
62,6815 |
78,4984 |
63,2157 |
157,827 |
45,974 |
115 |
26,1104 |
38,6986 |
58,0593 |
39,3953 |
135,522 |
20,8418 |
116 |
53,2843 |
66,6654 |
89,7409 |
67,5308 |
165,158 |
47,642 |
117 |
12,3582 |
26,5419 |
53,5062 |
27,5823 |
126,696 |
6,33469 |
118 |
21,4221 |
36,418 |
67,4481 |
37,6394 |
138,224 |
15,0099 |
119 |
-4,93394 |
10,8834 |
46,1593 |
12,2922 |
114,334 |
-11,7425 |
120 |
0,719984 |
17,3681 |
57,0728 |
18,9704 |
122,455 |
-6,4924 |
121 |
77,2839 |
94,772 |
139,091 |
96,5741 |
201,486 |
69,6601 |
122 |
15,9478 |
34,2849 |
83,408 |
36,2931 |
142,619 |
7,90498 |
123 |
28,7717 |
47,9668 |
102,085 |
50,1872 |
157,912 |
20,3022 |
124 |
29,3157 |
49,3775 |
108,687 |
51,8164 |
160,926 |
20,4119 |
125 |
16,49 |
37,43 |
102,12 |
40,09 |
150,57 |
7,14 |
126 |
12,96392 |
34,79 |
105,07 |
37,68 |
149,52 |
3,17 |
127 |
-10,94216 |
11,77 |
87,85 |
14,9 |
128,08 |
-21,2 |
128 |
-42,87824 |
-19,26 |
62,82 |
-15,89 |
98,62 |
-53,6 |
129 |
-94,72432 |
-70,2 |
18,09 |
-66,58 |
49,25 |
-105,92 |
130 |
|
|
|
|
|
|
Приложение 10
Построение логистической модели в зависимости продолжительности ретроспективного периода.
N=110
Multiple Regression - (ConsGOODS) (num>14)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>14
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
830,49 |
12,0228 |
69,0765 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,10146E8 |
1 |
1,10146E8 |
4771,56 |
0,0000 |
Residual |
2,51613E6 |
109 |
23083,8 |
|
|
Total |
1,12662E8 |
110 |
|
|
|
R-squared = 97,7667 percent
R-squared (adjusted for d.f.) = 97,7667 percent
Standard Error of Est. = 151,933
Mean absolute error = 119,51
Durbin-Watson statistic = 0,0988071
Lag 1 residual autocorrelation = 0,94905
(ConsGOODS) = 830,49*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1147,32 |
152,839 |
844,396 |
1450,24 |
126 |
1150,29 |
152,843 |
847,357 |
1453,22 |
127 |
1153,27 |
152,848 |
850,325 |
1456,21 |
128 |
1156,25 |
152,853 |
853,301 |
1459,2 |
129 |
1159,24 |
152,857 |
856,285 |
1462,2 |
130 |
1162,24 |
152,862 |
859,276 |
1465,21 |
N=100
Multiple Regression - (ConsGOODS) (num>24)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>24
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
828,155 |
12,8814 |
64,2906 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
1,0194E8 |
1 |
1,0194E8 |
4133,28 |
0,0000 |
Residual |
2,44167E6 |
99 |
24663,3 |
|
|
Total |
1,04382E8 |
100 |
|
|
|
R-squared = 97,6608 percent
R-squared (adjusted for d.f.) = 97,6608 percent
Standard Error of Est. = 157,046
Mean absolute error = 124,028
Durbin-Watson statistic = 0,0918624
Lag 1 residual autocorrelation = 0,953521
(ConsGOODS) = 828,155*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1144,09 |
158,051 |
830,484 |
1457,7 |
126 |
1147,05 |
158,056 |
833,436 |
1460,67 |
127 |
1150,02 |
158,061 |
836,395 |
1463,65 |
128 |
1153,0 |
158,066 |
839,361 |
1466,64 |
129 |
1155,98 |
158,072 |
842,336 |
1469,63 |
130 |
1158,98 |
158,077 |
845,318 |
1472,64 |
N=90
Multiple Regression - (ConsGOODS) (num>34)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>34
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
833,784 |
13,9784 |
59,648 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
9,52324E7 |
1 |
9,52324E7 |
3557,88 |
0,0000 |
Residual |
2,38223E6 |
89 |
26766,6 |
|
|
Total |
9,76146E7 |
90 |
|
|
|
R-squared = 97,5596 percent
R-squared (adjusted for d.f.) = 97,5596 percent
Standard Error of Est. = 163,605
Mean absolute error = 129,731
Durbin-Watson statistic = 0,0911199
Lag 1 residual autocorrelation = 0,953839
(ConsGOODS) = 833,784*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1151,87 |
164,741 |
824,531 |
1479,21 |
126 |
1154,85 |
164,747 |
827,501 |
1482,2 |
127 |
1157,84 |
164,753 |
830,479 |
1485,2 |
128 |
1160,84 |
164,759 |
833,464 |
1488,21 |
129 |
1163,84 |
164,764 |
836,457 |
1491,23 |
130 |
1166,85 |
164,77 |
839,458 |
1494,25 |
N=80
Multiple Regression - (ConsGOODS) (num>44)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>44
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
841,442 |
15,2694 |
55,1066 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
8,83044E7 |
1 |
8,83044E7 |
3036,74 |
0,0000 |
Residual |
2,29722E6 |
79 |
29078,7 |
|
|
Total |
9,06016E7 |
80 |
|
|
|
R-squared = 97,4645 percent
R-squared (adjusted for d.f.) = 97,4645 percent
Standard Error of Est. = 170,525
Mean absolute error = 134,175
Durbin-Watson statistic = 0,0912601
Lag 1 residual autocorrelation = 0,948629
(ConsGOODS) = 841,442*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1162,45 |
171,825 |
820,439 |
1504,46 |
126 |
1165,46 |
171,831 |
823,435 |
1507,48 |
127 |
1168,47 |
171,838 |
826,439 |
1510,51 |
128 |
1171,5 |
171,845 |
829,45 |
1513,55 |
129 |
1174,53 |
171,852 |
832,469 |
1516,59 |
130 |
1177,57 |
171,858 |
835,496 |
1519,65 |
N=60
Multiple Regression - (ConsGOODS) (num>64)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>64
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
852,086 |
18,9632 |
44,9337 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
7,12962E7 |
1 |
7,12962E7 |
2019,04 |
0,0000 |
Residual |
2,08341E6 |
59 |
35312,0 |
|
|
Total |
7,33796E7 |
60 |
|
|
|
R-squared = 97,1608 percent
R-squared (adjusted for d.f.) = 97,1608 percent
Standard Error of Est. = 187,915
Mean absolute error = 146,082
Durbin-Watson statistic = 0,0880797
Lag 1 residual autocorrelation = 0,9533
(ConsGOODS) = 852,086*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1177,15 |
189,732 |
797,499 |
1556,81 |
126 |
1180,2 |
189,742 |
800,528 |
1559,87 |
127 |
1183,26 |
189,751 |
803,564 |
1562,95 |
128 |
1186,32 |
189,76 |
806,608 |
1566,03 |
129 |
1189,39 |
189,77 |
809,66 |
1569,12 |
130 |
1192,47 |
189,78 |
812,72 |
1572,22 |
N=40
Multiple Regression - (ConsGOODS) (num>84)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>84
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
790,103 |
19,7345 |
40,0366 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
4,29402E7 |
1 |
4,29402E7 |
1602,93 |
0,0000 |
Residual |
1,04475E6 |
39 |
26788,5 |
|
|
Total |
4,3985E7 |
40 |
|
|
|
R-squared = 97,6248 percent
R-squared (adjusted for d.f.) = 97,6248 percent
Standard Error of Est. = 163,672
Mean absolute error = 133,988
Durbin-Watson statistic = 0,141224
Lag 1 residual autocorrelation = 0,863244
(ConsGOODS) = 790,103*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1091,52 |
165,927 |
755,903 |
1427,14 |
126 |
1094,35 |
165,939 |
758,705 |
1429,99 |
127 |
1097,18 |
165,95 |
761,514 |
1432,85 |
128 |
1100,02 |
165,962 |
764,331 |
1435,71 |
129 |
1102,87 |
165,974 |
767,155 |
1438,58 |
130 |
1105,72 |
165,986 |
769,986 |
1441,46 |
N=30
Multiple Regression - (ConsGOODS) (num>94)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>94
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
761,061 |
21,3113 |
35,7116 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
3,06399E7 |
1 |
3,06399E7 |
1275,32 |
0,0000 |
Residual |
696733, |
29 |
24025,3 |
|
|
Total |
3,13366E7 |
30 |
|
|
|
R-squared = 97,7766 percent
R-squared (adjusted for d.f.) = 97,7766 percent
Standard Error of Est. = 155,001
Mean absolute error = 137,699
Durbin-Watson statistic = 0,109184
Lag 1 residual autocorrelation = 0,928375
(ConsGOODS) = 761,061*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1051,4 |
157,772 |
728,721 |
1374,08 |
126 |
1054,12 |
157,786 |
731,414 |
1376,83 |
127 |
1056,85 |
157,801 |
734,113 |
1379,59 |
128 |
1059,59 |
157,815 |
736,82 |
1382,36 |
129 |
1062,33 |
157,83 |
739,533 |
1385,13 |
130 |
1065,08 |
157,844 |
742,253 |
1387,91 |
N=20
Multiple Regression - (ConsGOODS) (num>104)
Dependent variable: (ConsGOODS)
Independent variables:
1.09^(0.03*num)
Selection variable: num>104
|
|
Standard |
T |
|
Parameter |
Estimate |
Error |
Statistic |
P-Value |
1.09^(0.03*num) |
830,343 |
12,2457 |
67,8068 |
0,0000 |
Analysis of Variance
Source |
Sum of Squares |
Df |
Mean Square |
F-Ratio |
P-Value |
Model |
2,49378E7 |
1 |
2,49378E7 |
4597,77 |
0,0000 |
Residual |
103054, |
19 |
5423,89 |
|
|
Total |
2,50408E7 |
20 |
|
|
|
R-squared = 99,58 percent
R-squared (adjusted for d.f.) = 99,5885 percent
Standard Error of Est. = 73,647
Mean absolute error = 52,5364
Durbin-Watson statistic = 0,293051
Lag 1 residual autocorrelation = 0,6808
(ConsGOODS) = 830,343*1.09^(0.03*num)
Regression Results for (ConsGOODS)
|
Fitted |
Stnd. Error |
Lower 95,0% |
Upper 95,0% |
Row |
Value |
CL for Forecast |
CL for Forecast |
CL for Forecast |
125 |
1147,11 |
75,5651 |
988,954 |
1305,27 |
126 |
1150,08 |
75,5749 |
991,903 |
1308,26 |
127 |
1153,06 |
75,5848 |
994,86 |
1311,26 |
128 |
1156,05 |
75,5947 |
997,824 |
1314,27 |
129 |
1159,04 |
75,6047 |
1000,8 |
1317,28 |
130 |
1162,04 |
75,6147 |
1003,78 |
1320,3 |
Таблица для расчета прогностических характеристик в зависимости от длины ретроспективного периода
тестовая выборка |
значение показателя |
n (n<=T) |
||||||||
124 |
110 |
100 |
90 |
80 |
60 |
40 |
30 |
20 |
||
125 |
1156,66 |
1149,52 |
1147,32 |
1144,09 |
1151,87 |
1162,45 |
1177,2 |
1091,52 |
1051,4 |
1147,11 |
126 |
1155,66 |
1152,49 |
1150,29 |
1147,05 |
1154,85 |
1165,46 |
1180,2 |
1094,35 |
1054,12 |
1150,08 |
127 |
1134,28 |
1155,48 |
1153,27 |
1150,02 |
1157,84 |
1168,47 |
1183,3 |
1097,18 |
1056,85 |
1153,06 |
128 |
1104,87 |
1158,47 |
1156,25 |
1153 |
1160,84 |
1171,5 |
1186,3 |
1100,02 |
1059,59 |
1156,05 |
129 |
1055,55 |
1161,47 |
1159,24 |
1155,98 |
1163,84 |
1174,53 |
1189,4 |
1102,87 |
1062,33 |
1159,04 |
Приложение 11
Анализ автокорреляции ряда
Estimated Autocorrelations for ConsGOODS
|
|
|
Lower 95,0% |
Upper 95,0% |
Lag |
Autocorrelation |
Stnd. Error |
Prob. Limit |
Prob. Limit |
1 |
0,955248 |
0,0883883 |
-0,173238 |
0,173238 |
2 |
0,904005 |
0,148561 |
-0,291174 |
0,291174 |
3 |
0,853554 |
0,186653 |
-0,365834 |
0,365834 |
4 |
0,799529 |
0,214996 |
-0,421384 |
0,421384 |
5 |
0,736516 |
0,237089 |
-0,464687 |
0,464687 |
6 |
0,663977 |
0,254337 |
-0,498492 |
0,498492 |
7 |
0,596651 |
0,267536 |
-0,524363 |
0,524363 |
8 |
0,534354 |
0,277737 |
-0,544357 |
0,544357 |
9 |
0,463317 |
0,285656 |
-0,559877 |
0,559877 |
10 |
0,38415 |
0,291468 |
-0,571268 |
0,571268 |
11 |
0,312689 |
0,295397 |
-0,578969 |
0,578969 |
12 |
0,242585 |
0,297972 |
-0,584015 |
0,584015 |
13 |
0,167343 |
0,299511 |
-0,587031 |
0,587031 |
14 |
0,10929 |
0,30024 |
-0,588461 |
0,588461 |
15 |
0,0592736 |
0,300551 |
-0,58907 |
0,58907 |
16 |
0,0189565 |
0,300642 |
-0,589249 |
0,589249 |
17 |
-0,0183854 |
0,300652 |
-0,589267 |
0,589267 |
18 |
-0,0457655 |
0,30066 |
-0,589285 |
0,589285 |
19 |
-0,0616535 |
0,300715 |
-0,589391 |
0,589391 |
20 |
-0,0831201 |
0,300814 |
-0,589585 |
0,589585 |
21 |
-0,0981423 |
0,300993 |
-0,589936 |
0,589936 |
22 |
-0,114109 |
0,301243 |
-0,590426 |
0,590426 |
23 |
-0,11543 |
0,30158 |
-0,591088 |
0,591088 |
24 |
-0,112791 |
0,301925 |
-0,591764 |
0,591764 |
Estimated Partial Autocorrelations for ConsGOODS
|
Partial |
|
Lower 95,0% |
Upper 95,0% |
Lag |
Autocorrelation |
Stnd. Error |
Prob. Limit |
Prob. Limit |
1 |
0,955248 |
0,0883883 |
-0,173238 |
0,173238 |
2 |
-0,0970735 |
0,0883883 |
-0,173238 |
0,173238 |
3 |
-0,0126156 |
0,0883883 |
-0,173238 |
0,173238 |
4 |
-0,0701198 |
0,0883883 |
-0,173238 |
0,173238 |
5 |
-0,128263 |
0,0883883 |
-0,173238 |
0,173238 |
6 |
-0,136785 |
0,0883883 |
-0,173238 |
0,173238 |
7 |
0,027253 |
0,0883883 |
-0,173238 |
0,173238 |
8 |
0,0123685 |
0,0883883 |
-0,173238 |
0,173238 |
9 |
-0,13413 |
0,0883883 |
-0,173238 |
0,173238 |
10 |
-0,121182 |
0,0883883 |
-0,173238 |
0,173238 |
11 |
0,037319 |
0,0883883 |
-0,173238 |
0,173238 |
12 |
-0,0683891 |
0,0883883 |
-0,173238 |
0,173238 |
13 |
-0,108885 |
0,0883883 |
-0,173238 |
0,173238 |
14 |
0,192417 |
0,0883883 |
-0,173238 |
0,173238 |
15 |
0,0172174 |
0,0883883 |
-0,173238 |
0,173238 |
16 |
0,0230192 |
0,0883883 |
-0,173238 |
0,173238 |
17 |
-0,00320551 |
0,0883883 |
-0,173238 |
0,173238 |
18 |
0,0899016 |
0,0883883 |
-0,173238 |
0,173238 |
19 |
0,0124698 |
0,0883883 |
-0,173238 |
0,173238 |
20 |
-0,1466 |
0,0883883 |
-0,173238 |
0,173238 |
21 |
0,0986533 |
0,0883883 |
-0,173238 |
0,173238 |
22 |
-0,0968146 |
0,0883883 |
-0,173238 |
0,173238 |
23 |
0,0642445 |
0,0883883 |
-0,173238 |
0,173238 |
24 |
0,0192838 |
0,0883883 |
-0,173238 |
0,173238 |
Приложение
12
Расчет Q-статистики Бокса-Пирса и Бокса-Льюинга
№ |
Y |
|
|
|
(Yt-T-Ycp) |
(Yt-T-Ycp)^2 |
|
Yt-Ycp |
||||||
1 |
813,17 |
|
|
|
-173,982188 |
30269,80157 |
|
r1 |
|
|||||
2 |
877,02 |
|
|
|
-110,132188 |
12129,09872 |
|
-173,982 |
r2 |
|
||||
3 |
844,36 |
|
|
|
-142,792188 |
20389,60881 |
|
877,02 |
-174,512 |
r3 |
|
|||
4 |
856,69 |
|
|
|
-130,462188 |
17020,38237 |
|
844,36 |
877,02 |
-174,512 |
r4 |
|
||
5 |
924,97 |
|
|
|
-62,1821875 |
3866,624442 |
|
856,69 |
844,36 |
877,02 |
-174,512 |
r5 |
|
|
6 |
953,18 |
|
|
|
-33,9721875 |
1154,109524 |
|
924,97 |
856,69 |
844,36 |
877,02 |
-174,512 |
r6 |
|
7 |
892,74 |
|
|
|
-94,4121875 |
8913,661149 |
|
953,18 |
924,97 |
856,69 |
844,36 |
877,02 |
-174,512 |
r7 |
8 |
874,46 |
|
|
|
-112,692188 |
12699,52912 |
|
892,74 |
953,18 |
924,97 |
856,69 |
844,36 |
877,02 |
-174,512 |
9 |
771,4 |
|
|
|
-215,752188 |
46549,00641 |
|
874,46 |
892,74 |
953,18 |
924,97 |
856,69 |
844,36 |
877,02 |
10 |
785,72 |
|
|
|
-201,432188 |
40574,92616 |
|
771,4 |
874,46 |
892,74 |
953,18 |
924,97 |
856,69 |
844,36 |
11 |
829,36 |
|
|
|
-157,792188 |
24898,37444 |
|
785,72 |
771,4 |
874,46 |
892,74 |
953,18 |
924,97 |
856,69 |
12 |
865,08 |
|
|
|
-122,072188 |
14901,61896 |
|
829,36 |
785,72 |
771,4 |
874,46 |
892,74 |
953,18 |
924,97 |
13 |
892,15 |
|
|
|
-95,0021875 |
9025,41563 |
|
865,08 |
829,36 |
785,72 |
771,4 |
874,46 |
892,74 |
953,18 |
14 |
947,28 |
|
|
|
-39,8721875 |
1589,791336 |
|
892,15 |
865,08 |
829,36 |
785,72 |
771,4 |
874,46 |
892,74 |
15 |
948,6 |
|
|
|
-38,5521875 |
1486,271161 |
|
947,28 |
892,15 |
865,08 |
829,36 |
785,72 |
771,4 |
874,46 |
16 |
992,79 |
|
|
|
5,6378125 |
31,78492979 |
|
948,6 |
947,28 |
892,15 |
865,08 |
829,36 |
785,72 |
771,4 |
17 |
1017,36 |
|
|
|
30,2078125 |
912,511936 |
|
992,79 |
948,6 |
947,28 |
892,15 |
865,08 |
829,36 |
785,72 |
18 |
997,49 |
|
|
|
10,3378125 |
106,8703673 |
|
1017,36 |
992,79 |
948,6 |
947,28 |
892,15 |
865,08 |
829,36 |
19 |
911,97 |
|
|
|
-75,1821875 |
5652,361317 |
|
997,49 |
1017,36 |
992,79 |
948,6 |
947,28 |
892,15 |
865,08 |
20 |
837,21 |
|
|
|
-149,942188 |
22482,65959 |
|
911,97 |
997,49 |
1017,36 |
992,79 |
948,6 |
947,28 |
892,15 |
21 |
857,42 |
|
|
|
-129,732188 |
16830,44047 |
|
837,21 |
911,97 |
997,49 |
1017,36 |
992,79 |
948,6 |
947,28 |
22 |
798,01 |
|
|
|
-189,142188 |
35774,76709 |
|
857,42 |
837,21 |
911,97 |
997,49 |
1017,36 |
992,79 |
948,6 |
23 |
859,33 |
|
|
|
-127,822188 |
16338,51162 |
|
798,01 |
857,42 |
837,21 |
911,97 |
997,49 |
1017,36 |
992,79 |
24 |
849,27 |
|
|
|
-137,882188 |
19011,49763 |
|
859,33 |
798,01 |
857,42 |
837,21 |
911,97 |
997,49 |
1017,36 |
25 |
838,65 |
|
|
|
-148,502188 |
22052,89969 |
|
849,27 |
859,33 |
798,01 |
857,42 |
837,21 |
911,97 |
997,49 |
26 |
824,31 |
|
|
|
-162,842188 |
26517,57803 |
|
838,65 |
849,27 |
859,33 |
798,01 |
857,42 |
837,21 |
911,97 |
27 |
820,56 |
|
|
|
-166,592188 |
27752,95694 |
|
824,31 |
838,65 |
849,27 |
859,33 |
798,01 |
857,42 |
837,21 |
28 |
821,28 |
|
|
|
-165,872188 |
27513,58259 |
|
820,56 |
824,31 |
838,65 |
849,27 |
859,33 |
798,01 |
857,42 |
29 |
812,44 |
|
|
|
-174,712188 |
30524,34846 |
|
821,28 |
820,56 |
824,31 |
838,65 |
849,27 |
859,33 |
798,01 |
30 |
786,55 |
|
|
|
-200,602188 |
40241,23763 |
|
812,44 |
821,28 |
820,56 |
824,31 |
838,65 |
849,27 |
859,33 |
31 |
804,84 |
|
|
|
-182,312188 |
33237,73371 |
|
786,55 |
812,44 |
821,28 |
820,56 |
824,31 |
838,65 |
849,27 |
32 |
834,95 |
|
|
|
-152,202188 |
23165,50588 |
|
804,84 |
786,55 |
812,44 |
821,28 |
820,56 |
824,31 |
838,65 |
33 |
863,61 |
|
|
|
-123,542188 |
15262,67209 |
|
834,95 |
804,84 |
786,55 |
812,44 |
821,28 |
820,56 |
824,31 |
34 |
816,88 |
|
|
|
-170,272188 |
28992,61784 |
|
863,61 |
834,95 |
804,84 |
786,55 |
812,44 |
821,28 |
820,56 |
35 |
862,39 |
|
|
|
-124,762188 |
15565,60343 |
|
816,88 |
863,61 |
834,95 |
804,84 |
786,55 |
812,44 |
821,28 |
36 |
839,67 |
|
|
|
-147,482188 |
21750,99563 |
|
862,39 |
816,88 |
863,61 |
834,95 |
804,84 |
786,55 |
812,44 |
37 |
812,22 |
|
|
|
-174,932188 |
30601,27022 |
|
839,67 |
862,39 |
816,88 |
863,61 |
834,95 |
804,84 |
786,55 |
38 |
822,04 |
|
|
|
-165,112188 |
27262,03446 |
|
812,22 |
839,67 |
862,39 |
816,88 |
863,61 |
834,95 |
804,84 |
39 |
823,26 |
|
|
|
-163,892188 |
26860,64912 |
|
822,04 |
812,22 |
839,67 |
862,39 |
816,88 |
863,61 |
834,95 |
40 |
843,39 |
|
|
|
-143,762188 |
20667,56655 |
|
823,26 |
822,04 |
812,22 |
839,67 |
862,39 |
816,88 |
863,61 |
41 |
865,42 |
|
|
|
-121,732188 |
14818,72547 |
|
843,39 |
823,26 |
822,04 |
812,22 |
839,67 |
862,39 |
816,88 |
42 |
825,66 |
|
|
|
-161,492188 |
26079,72662 |
|
865,42 |
843,39 |
823,26 |
822,04 |
812,22 |
839,67 |
862,39 |
43 |
850,26 |
|
|
|
-136,892188 |
18739,471 |
|
825,66 |
865,42 |
843,39 |
823,26 |
822,04 |
812,22 |
839,67 |
44 |
828,34 |
|
|
|
-158,812188 |
25221,3109 |
|
850,26 |
825,66 |
865,42 |
843,39 |
823,26 |
822,04 |
812,22 |
45 |
783,02 |
|
|
|
-204,132188 |
41669,94997 |
|
828,34 |
850,26 |
825,66 |
865,42 |
843,39 |
823,26 |
822,04 |
46 |
807,71 |
|
|
|
-179,442188 |
32199,49865 |
|
783,02 |
828,34 |
850,26 |
825,66 |
865,42 |
843,39 |
823,26 |
47 |
791,73 |
|
|
|
-195,422188 |
38189,83137 |
|
807,71 |
783,02 |
828,34 |
850,26 |
825,66 |
865,42 |
843,39 |
48 |
829,32 |
|
|
|
-157,832188 |
24910,99941 |
|
791,73 |
807,71 |
783,02 |
828,34 |
850,26 |
825,66 |
865,42 |
49 |
863,65 |
|
|
|
-123,502188 |
15252,79032 |
|
829,32 |
791,73 |
807,71 |
783,02 |
828,34 |
850,26 |
825,66 |
50 |
878,19 |
|
|
|
-108,962188 |
11872,7583 |
|
863,65 |
829,32 |
791,73 |
807,71 |
783,02 |
828,34 |
850,26 |
51 |
894,68 |
|
|
|
-92,4721875 |
8551,105461 |
|
878,19 |
863,65 |
829,32 |
791,73 |
807,71 |
783,02 |
828,34 |
52 |
873,43 |
|
|
|
-113,722188 |
12932,73593 |
|
894,68 |
878,19 |
863,65 |
829,32 |
791,73 |
807,71 |
783,02 |
53 |
841,42 |
|
|
|
-145,732188 |
21237,87047 |
|
873,43 |
894,68 |
878,19 |
863,65 |
829,32 |
791,73 |
807,71 |
54 |
923,94 |
|
|
|
-63,2121875 |
3995,780649 |
|
841,42 |
873,43 |
894,68 |
878,19 |
863,65 |
829,32 |
791,73 |
55 |
919,01 |
|
|
|
-68,1421875 |
4643,357717 |
|
923,94 |
841,42 |
873,43 |
894,68 |
878,19 |
863,65 |
829,32 |
56 |
919,19 |
|
|
|
-67,9621875 |
4618,85893 |
|
919,01 |
923,94 |
841,42 |
873,43 |
894,68 |
878,19 |
863,65 |
57 |
881,18 |
|
|
|
-105,972188 |
11230,10452 |
|
919,19 |
919,01 |
923,94 |
841,42 |
873,43 |
894,68 |
878,19 |
58 |
911,06 |
|
|
|
-76,0921875 |
5790,020999 |
|
881,18 |
919,19 |
919,01 |
923,94 |
841,42 |
873,43 |
894,68 |
59 |
921,6 |
|
|
|
-65,5521875 |
4297,089286 |
|
911,06 |
881,18 |
919,19 |
919,01 |
923,94 |
841,42 |
873,43 |
60 |
1016,39 |
|
|
|
29,2378125 |
854,8496798 |
|
921,6 |
911,06 |
881,18 |
919,19 |
919,01 |
923,94 |
841,42 |
61 |
1055,37 |
|
|
|
68,2178125 |
4653,669942 |
|
1016,39 |
921,6 |
911,06 |
881,18 |
919,19 |
919,01 |
923,94 |
62 |
1103,51 |
|
|
|
116,3578125 |
13539,14053 |
|
1055,37 |
1016,39 |
921,6 |
911,06 |
881,18 |
919,19 |
919,01 |
63 |
1112,47 |
|
|
|
125,3178125 |
15704,55413 |
|
1103,51 |
1055,37 |
1016,39 |
921,6 |
911,06 |
881,18 |
919,19 |
64 |
1119,03 |
|
|
|
131,8778125 |
17391,75743 |
|
1112,47 |
1103,51 |
1055,37 |
1016,39 |
921,6 |
911,06 |
881,18 |
65 |
1113,04 |
|
|
|
125,8878125 |
15847,74134 |
|
1119,03 |
1112,47 |
1103,51 |
1055,37 |
1016,39 |
921,6 |
911,06 |
66 |
1028,2 |
|
|
|
41,0478125 |
1684,922911 |
|
1113,04 |
1119,03 |
1112,47 |
1103,51 |
1055,37 |
1016,39 |
921,6 |
67 |
1038,78 |
|
|
|
51,6278125 |
2665,431024 |
|
1028,2 |
1113,04 |
1119,03 |
1112,47 |
1103,51 |
1055,37 |
1016,39 |
68 |
1086,43 |
|
|
|
99,2778125 |
9856,084055 |
|
1038,78 |
1028,2 |
1113,04 |
1119,03 |
1112,47 |
1103,51 |
1055,37 |
69 |
1105,96 |
|
|
|
118,8078125 |
14115,29631 |
|
1086,43 |
1038,78 |
1028,2 |
1113,04 |
1119,03 |
1112,47 |
1103,51 |
70 |
1125,8 |
|
|
|
138,6478125 |
19223,21591 |
|
1105,96 |
1086,43 |
1038,78 |
1028,2 |
1113,04 |
1119,03 |
1112,47 |
71 |
1124,88 |
|
|
|
137,7278125 |
18968,95034 |
|
1125,8 |
1105,96 |
1086,43 |
1038,78 |
1028,2 |
1113,04 |
1119,03 |
72 |
1162,68 |
|
|
|
175,5278125 |
30810,01296 |
|
1124,88 |
1125,8 |
1105,96 |
1086,43 |
1038,78 |
1028,2 |
1113,04 |
73 |
1204,92 |
|
|
|
217,7678125 |
47422,82016 |
|
1162,68 |
1124,88 |
1125,8 |
1105,96 |
1086,43 |
1038,78 |
1028,2 |
74 |
1232,24 |
|
|
|
245,0878125 |
60068,03584 |
|
1204,92 |
1162,68 |
1124,88 |
1125,8 |
1105,96 |
1086,43 |
1038,78 |
75 |
1138,69 |
|
|
|
151,5378125 |
22963,70862 |
|
1232,24 |
1204,92 |
1162,68 |
1124,88 |
1125,8 |
1105,96 |
1086,43 |
76 |
1230,79 |
|
|
|
243,6378125 |
59359,38368 |
|
1138,69 |
1232,24 |
1204,92 |
1162,68 |
1124,88 |
1125,8 |
1105,96 |
77 |
1271,72 |
|
|
|
284,5678125 |
80978,83991 |
|
1230,79 |
1138,69 |
1232,24 |
1204,92 |
1162,68 |
1124,88 |
1125,8 |
78 |
1307,78 |
|
|
|
320,6278125 |
102802,1941 |
|
1271,72 |
1230,79 |
1138,69 |
1232,24 |
1204,92 |
1162,68 |
1124,88 |
79 |
1328,18 |
|
|
|
341,0278125 |
116299,9689 |
|
1307,78 |
1271,72 |
1230,79 |
1138,69 |
1232,24 |
1204,92 |
1162,68 |
80 |
1310,47 |
|
|
|
323,3178125 |
104534,4079 |
|
1328,18 |
1307,78 |
1271,72 |
1230,79 |
1138,69 |
1232,24 |
1204,92 |
81 |
1326,15 |
|
|
|
338,9978125 |
114919,5169 |
|
1310,47 |
1328,18 |
1307,78 |
1271,72 |
1230,79 |
1138,69 |
1232,24 |
82 |
1344,56 |
|
|
|
357,4078125 |
127740,3444 |
|
1326,15 |
1310,47 |
1328,18 |
1307,78 |
1271,72 |
1230,79 |
1138,69 |
83 |
1348,83 |
|
|
|
361,6778125 |
130810,8401 |
|
1344,56 |
1326,15 |
1310,47 |
1328,18 |
1307,78 |
1271,72 |
1230,79 |
84 |
1324,74 |
|
|
|
337,5878125 |
113965,5311 |
|
1348,83 |
1344,56 |
1326,15 |
1310,47 |
1328,18 |
1307,78 |
1271,72 |
85 |
1347,72 |
|
|
|
360,5678125 |
130009,1474 |
|
1324,74 |
1348,83 |
1344,56 |
1326,15 |
1310,47 |
1328,18 |
1307,78 |
86 |
1213,49 |
|
|
|
226,3378125 |
51228,80537 |
|
1347,72 |
1324,74 |
1348,83 |
1344,56 |
1326,15 |
1310,47 |
1328,18 |
87 |
1145,62 |
|
|
|
158,4678125 |
25112,0476 |
|
1213,49 |
1347,72 |
1324,74 |
1348,83 |
1344,56 |
1326,15 |
1310,47 |
88 |
1180,98 |
|
|
|
193,8278125 |
37569,2209 |
|
1145,62 |
1213,49 |
1347,72 |
1324,74 |
1348,83 |
1344,56 |
1326,15 |
89 |
1181,07 |
|
|
|
193,9178125 |
37604,118 |
|
1180,98 |
1145,62 |
1213,49 |
1347,72 |
1324,74 |
1348,83 |
1344,56 |
90 |
1145,27 |
|
|
|
158,1178125 |
25001,24263 |
|
1181,07 |
1180,98 |
1145,62 |
1213,49 |
1347,72 |
1324,74 |
1348,83 |
91 |
995,52 |
|
|
|
8,3678125 |
70,02028604 |
|
1145,27 |
1181,07 |
1180,98 |
1145,62 |
1213,49 |
1347,72 |
1324,74 |
92 |
957,73 |
|
|
|
-29,4221875 |
865,6651173 |
|
995,52 |
1145,27 |
1181,07 |
1180,98 |
1145,62 |
1213,49 |
1347,72 |
93 |
1030,47 |
|
|
|
43,3178125 |
1876,43288 |
|
957,73 |
995,52 |
1145,27 |
1181,07 |
1180,98 |
1145,62 |
1213,49 |
94 |
987,7 |
|
|
|
0,5478125 |
0,300098535 |
|
1030,47 |
957,73 |
995,52 |
1145,27 |
1181,07 |
1180,98 |
1145,62 |
95 |
874,21 |
|
|
|
-112,942188 |
12755,93772 |
|
987,7 |
1030,47 |
957,73 |
995,52 |
1145,27 |
1181,07 |
1180,98 |
96 |
749,78 |
|
|
|
-237,372188 |
56345,5554 |
|
874,21 |
987,7 |
1030,47 |
957,73 |
995,52 |
1145,27 |
1181,07 |
97 |
815,25 |
|
|
|
-171,902188 |
29550,36207 |
|
749,78 |
874,21 |
987,7 |
1030,47 |
957,73 |
995,52 |
1145,27 |
98 |
788,89 |
|
|
|
-198,262188 |
39307,89499 |
|
815,25 |
749,78 |
874,21 |
987,7 |
1030,47 |
957,73 |
995,52 |
99 |
688,15 |
|
|
|
-299,002188 |
89402,30813 |
|
788,89 |
815,25 |
749,78 |
874,21 |
987,7 |
1030,47 |
957,73 |
100 |
689,85 |
|
|
|
-297,302188 |
88388,59069 |
|
688,15 |
788,89 |
815,25 |
749,78 |
874,21 |
987,7 |
1030,47 |
101 |
758,83 |
|
|
|
-228,322188 |
52131,0213 |
|
689,85 |
688,15 |
788,89 |
815,25 |
749,78 |
874,21 |
987,7 |
102 |
813,63 |
|
|
|
-173,522188 |
30109,94955 |
|
758,83 |
689,85 |
688,15 |
788,89 |
815,25 |
749,78 |
874,21 |
103 |
820,49 |
|
|
|
-166,662188 |
27776,28474 |
|
813,63 |
758,83 |
689,85 |
688,15 |
788,89 |
815,25 |
749,78 |
104 |
906,61 |
|
|
|
-80,5421875 |
6487,043967 |
|
820,49 |
813,63 |
758,83 |
689,85 |
688,15 |
788,89 |
815,25 |
105 |
902,04 |
|
|
|
-85,1121875 |
7244,084461 |
|
906,61 |
820,49 |
813,63 |
758,83 |
689,85 |
688,15 |
788,89 |
106 |
941,57 |
|
|
|
-45,5821875 |
2077,735817 |
|
902,04 |
906,61 |
820,49 |
813,63 |
758,83 |
689,85 |
688,15 |
107 |
988,37 |
|
|
|
1,2178125 |
1,483067285 |
|
941,57 |
902,04 |
906,61 |
820,49 |
813,63 |
758,83 |
689,85 |
108 |
1024,29 |
|
|
|
37,1378125 |
1379,217117 |
|
988,37 |
941,57 |
902,04 |
906,61 |
820,49 |
813,63 |
758,83 |
109 |
1117,68 |
|
|
|
130,5278125 |
17037,50984 |
|
1024,29 |
988,37 |
941,57 |
902,04 |
906,61 |
820,49 |
813,63 |
110 |
1125,11 |
|
|
|
137,9578125 |
19032,35803 |
|
1117,68 |
1024,29 |
988,37 |
941,57 |
902,04 |
906,61 |
820,49 |
111 |
1142,6 |
|
|
|
155,4478125 |
24164,02241 |
|
1125,11 |
1117,68 |
1024,29 |
988,37 |
941,57 |
902,04 |
906,61 |
112 |
1196,45 |
|
|
|
209,2978125 |
43805,57432 |
|
1142,6 |
1125,11 |
1117,68 |
1024,29 |
988,37 |
941,57 |
902,04 |
113 |
1193,84 |
|
|
|
206,6878125 |
42719,85184 |
|
1196,45 |
1142,6 |
1125,11 |
1117,68 |
1024,29 |
988,37 |
941,57 |
114 |
1163,26 |
|
|
|
176,1078125 |
31013,96162 |
|
1193,84 |
1196,45 |
1142,6 |
1125,11 |
1117,68 |
1024,29 |
988,37 |
115 |
1141,02 |
|
|
|
153,8678125 |
23675,30372 |
|
1163,26 |
1193,84 |
1196,45 |
1142,6 |
1125,11 |
1117,68 |
1024,29 |
116 |
1170,72 |
|
|
|
183,5678125 |
33697,14179 |
|
1141,02 |
1163,26 |
1193,84 |
1196,45 |
1142,6 |
1125,11 |
1117,68 |
117 |
1132,32 |
|
|
|
145,1678125 |
21073,69379 |
|
1170,72 |
1141,02 |
1163,26 |
1193,84 |
1196,45 |
1142,6 |
1125,11 |
118 |
1143,91 |
|
|
|
156,7578125 |
24573,01178 |
|
1132,32 |
1170,72 |
1141,02 |
1163,26 |
1193,84 |
1196,45 |
1142,6 |
119 |
1120,08 |
|
|
|
132,9278125 |
17669,80334 |
|
1143,91 |
1132,32 |
1170,72 |
1141,02 |
1163,26 |
1193,84 |
1196,45 |
120 |
1128,26 |
|
|
|
141,1078125 |
19911,41475 |
|
1120,08 |
1143,91 |
1132,32 |
1170,72 |
1141,02 |
1163,26 |
1193,84 |
121 |
1207,35 |
|
|
|
220,1978125 |
48487,07663 |
|
1128,26 |
1120,08 |
1143,91 |
1132,32 |
1170,72 |
1141,02 |
1163,26 |
122 |
1148,54 |
|
|
|
161,3878125 |
26046,02602 |
|
1207,35 |
1128,26 |
1120,08 |
1143,91 |
1132,32 |
1170,72 |
1141,02 |
123 |
1163,89 |
|
|
|
176,7378125 |
31236,25437 |
|
1148,54 |
1207,35 |
1128,26 |
1120,08 |
1143,91 |
1132,32 |
1170,72 |
124 |
1166,96 |
|
|
|
179,8078125 |
32330,84944 |
|
1163,89 |
1148,54 |
1207,35 |
1128,26 |
1120,08 |
1143,91 |
1132,32 |
125 |
1156,66 |
|
|
|
169,5078125 |
28732,8985 |
|
1166,96 |
1163,89 |
1148,54 |
1207,35 |
1128,26 |
1120,08 |
1143,91 |
126 |
1155,66 |
|
|
|
168,5078125 |
28394,88287 |
|
1156,66 |
1166,96 |
1163,89 |
1148,54 |
1207,35 |
1128,26 |
1120,08 |
127 |
1134,28 |
|
|
|
147,1278125 |
21646,59321 |
|
1155,66 |
1156,66 |
1166,96 |
1163,89 |
1148,54 |
1207,35 |
1128,26 |
128 |
1104,87 |
|
|
|
117,7178125 |
13857,48338 |
|
1134,28 |
1155,66 |
1156,66 |
1166,96 |
1163,89 |
1148,54 |
1207,35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
среднее |
987,1522 |
|
|
|
сумма |
3655412,262 |
|
|
|
|
|
|
|
|
|
(Yt-Ycp)*(Yt-T-Ycp) |
|
||||||||
|
r1 |
|
|
|||||||
|
19161,04 |
r2 |
|
|
||||||
|
-125232 |
24919,01 |
r3 |
|
|
|||||
|
-110157 |
-114418 |
22767,27 |
r4 |
|
|
||||
|
-53270,9 |
-52504,2 |
-54535 |
10851,56 |
r5 |
|
|
|||
|
-31423,3 |
-29103,6 |
-28684,8 |
-29794,3 |
5928,568 |
r6 |
|
|
||
|
-89991,8 |
-87328,4 |
-80882 |
-79717,9 |
-82801,4 |
16476,1 |
r7 |
|
||
|
-100605 |
-107416 |
-104237 |
-96542,3 |
-95152,8 |
-98833,3 |
19666,18 |
|
||
|
-188667 |
-192611 |
-205651 |
-199564 |
-184833 |
-182173 |
-189219 |
|
||
|
-155385 |
-176144 |
-179827 |
-192001 |
-186319 |
-172565 |
-170081 |
|
||
|
-123980 |
-121721 |
-137983 |
-140867 |
-150404 |
-145953 |
-135179 |
|
||
|
-101242 |
-95914,6 |
-94166,5 |
-106747 |
-108979 |
-116357 |
-112913 |
|
||
|
-82184,5 |
-78791 |
-74645,1 |
-73284,7 |
-83075,6 |
-84812,3 |
-90554,2 |
|
||
|
-35572 |
-34492,6 |
-33068,4 |
-31328,4 |
-30757,4 |
-34866,6 |
-35595,5 |
|
||
|
-36519,7 |
-34394,3 |
-33350,7 |
-31973,6 |
-30291,2 |
-29739,2 |
-33712,3 |
|
||
|
5348,029 |
5340,587 |
5029,774 |
4877,159 |
4675,776 |
4429,742 |
4349,009 |
|
||
|
29990,01 |
28655,13 |
28615,26 |
26949,9 |
26132,17 |
25053,15 |
23734,88 |
|
||
|
10517,28 |
10263,28 |
9806,449 |
9792,803 |
9222,879 |
8943,035 |
8573,768 |
|
||
|
-74993,5 |
-76487,4 |
-74640,1 |
-71317,8 |
-71218,6 |
-67073,8 |
-65038,6 |
|
||
|
-136743 |
-149566 |
-152545 |
-148861 |
-142235 |
-142037 |
-133771 |
|
||
|
-108613 |
-118312 |
-129407 |
-131984 |
-128797 |
-123064 |
-122893 |
|
||
|
-162174 |
-158352 |
-172492 |
-188667 |
-192426 |
-187778 |
-179420 |
|
||
|
-102003 |
-109597 |
-107014 |
-116570 |
-127501 |
-130041 |
-126901 |
|
||
|
-118486 |
-110031 |
-118223 |
-115436 |
-125744 |
-137536 |
-140276 |
|
||
|
-126118 |
-127612 |
-118506 |
-127329 |
-124328 |
-135430 |
-148129 |
|
||
|
-136568 |
-138297 |
-139935 |
-129950 |
-139624 |
-136333 |
-148507 |
|
||
|
-137324 |
-139713 |
-141482 |
-143158 |
-132942 |
-142839 |
-139473 |
|
||
|
-136108 |
-136730 |
-139109 |
-140870 |
-142539 |
-132368 |
-142222 |
|
||
|
-143488 |
-143362 |
-144017 |
-146522 |
-148378 |
-150135 |
-139422 |
|
||
|
-162977 |
-164751 |
-164606 |
-165358 |
-168235 |
-170365 |
-172383 |
|
||
|
-143398 |
-148118 |
-149729 |
-149598 |
-150282 |
-152896 |
-154832 |
|
||
|
-122498 |
-119715 |
-123655 |
-125001 |
-124891 |
-125462 |
-127644 |
|
||
|
-103152 |
-99431,7 |
-97172,1 |
-100371 |
-101463 |
-101374 |
-101837 |
|
||
|
-147049 |
-142169 |
-137042 |
-133928 |
-138336 |
-139841 |
-139719 |
|
||
|
-101916 |
-107746 |
-104170 |
-100414 |
-98131,7 |
-101362 |
-102465 |
|
||
|
-127187 |
-120475 |
-127367 |
-123140 |
-118700 |
-116002 |
-119820 |
|
||
|
-146885 |
-150860 |
-142899 |
-151073 |
-146060 |
-140792 |
-137593 |
|
||
|
-134107 |
-138640 |
-142391 |
-134877 |
-142593 |
-137860 |
-132889 |
|
||
|
-134726 |
-133117 |
-137615 |
-141339 |
-133880 |
-141539 |
-136842 |
|
||
|
-118354 |
-118178 |
-116767 |
-120713 |
-123979 |
-117436 |
-124154 |
|
||
|
-102668 |
-100217 |
-100069 |
-98873,3 |
-102215 |
-104981 |
-99440,6 |
|
||
|
-139759 |
-136201 |
-132950 |
-132753 |
-131167 |
-135600 |
-139269 |
|
||
|
-113026 |
-118469 |
-115454 |
-112698 |
-112531 |
-111187 |
-114944 |
|
||
|
-135032 |
-131125 |
-137439 |
-133941 |
-130744 |
-130550 |
-128990 |
|
||
|
-169091 |
-173565 |
-168544 |
-176660 |
-172163 |
-168054 |
-167805 |
|
||
|
-140507 |
-148639 |
-152573 |
-148158 |
-155293 |
-151340 |
-147728 |
|
||
|
-157844 |
-153019 |
-161876 |
-166160 |
-161352 |
-169122 |
-164817 |
|
||
|
-124960 |
-127483 |
-123586 |
-130739 |
-134198 |
-130316 |
-136591 |
|
||
|
-102423 |
-97780,4 |
-99754 |
-96704,7 |
-102302 |
-105009 |
-101971 |
|
||
|
-94105,2 |
-90364,5 |
-86268,6 |
-88009,8 |
-85319,6 |
-90257,7 |
-92646,2 |
|
||
|
-81208,2 |
-79863,6 |
-76689 |
-73213 |
-74690,7 |
-72407,6 |
-76598,4 |
|
||
|
-101745 |
-99869,7 |
-98216,2 |
-94312,1 |
-90037,3 |
-91854,5 |
-89046,7 |
|
||
|
-127287 |
-130384 |
-127981 |
-125862 |
-120859 |
-115381 |
-117709 |
|
||
|
-53188 |
-55211,4 |
-56554,7 |
-55512,3 |
-54593,2 |
-52423,1 |
-50047 |
|
||
|
-62959,3 |
-57336,2 |
-59517,4 |
-60965,5 |
-59841,8 |
-58851 |
-56511,7 |
|
||
|
-62457,9 |
-62793 |
-57184,7 |
-59360,2 |
-60804,4 |
-59683,7 |
-58695,5 |
|
||
|
-97408,6 |
-97389,5 |
-97911,9 |
-89167,1 |
-92559,3 |
-94811,2 |
-93063,7 |
|
||
|
-67050,9 |
-69943,2 |
-69929,5 |
-70304,6 |
-64025,5 |
-66461,2 |
-68078,2 |
|
||
|
-59722 |
-57763,3 |
-60254,9 |
-60243,1 |
-60566,3 |
-55156,9 |
-57255,2 |
|
||
|
26945,57 |
26637,4 |
25763,78 |
26875,1 |
26869,84 |
27013,98 |
24601,28 |
|
||
|
69335,9 |
62869,54 |
62150,52 |
60112,17 |
62705,13 |
62692,85 |
63029,17 |
|
||
|
122800,5 |
118264,9 |
107235,4 |
106008,9 |
102532,2 |
106954,9 |
106934 |
|
||
|
138289,5 |
132256,7 |
127371,8 |
115492,9 |
114172 |
110427,6 |
115190,9 |
|
||
|
146710,1 |
145528,5 |
139179,9 |
134039,3 |
121538,6 |
120148,6 |
116208,1 |
|
||
|
140872,2 |
140046,4 |
138918,5 |
132858,2 |
127951,1 |
116018,2 |
114691,4 |
|
||
|
45687,86 |
45933,73 |
45664,46 |
45296,67 |
43320,63 |
41720,59 |
37829,66 |
|
||
|
53083,72 |
57463,82 |
57773,07 |
57434,39 |
56971,81 |
54486,44 |
52473,99 |
|
||
|
103127,8 |
102077,4 |
110500,2 |
111094,9 |
110443,6 |
109554,1 |
104774,8 |
|
||
|
129076,4 |
123415,2 |
122158,2 |
132237,8 |
132949,5 |
132170,1 |
131105,6 |
|
||
|
153338,9 |
150631,1 |
144024,6 |
142557,7 |
154320,6 |
155151,1 |
154241,5 |
|
||
|
155054 |
152321,5 |
149631,6 |
143068,9 |
141611,7 |
153296,6 |
154121,6 |
|
||
|
197447,7 |
197609,2 |
194126,7 |
190698,7 |
182334,8 |
180477,7 |
195369,5 |
|
||
|
253194,3 |
244962,7 |
245163 |
240842,5 |
236589,5 |
226212,8 |
223908,9 |
|
||
|
295311,2 |
284958,7 |
275694,4 |
275919,9 |
271057,3 |
266270,8 |
254592,3 |
|
||
|
186731 |
182590,9 |
176190 |
170461,9 |
170601,3 |
167594,8 |
164635,2 |
|
||
|
277427,9 |
300220,3 |
293564,1 |
283272,8 |
274063,3 |
274287,4 |
269453,7 |
|
||
|
350243,2 |
324034,5 |
350655,8 |
342881,4 |
330861,3 |
320104,6 |
320366,4 |
|
||
|
407748,8 |
394625,5 |
365095,7 |
395090,4 |
386330,9 |
372787,5 |
360667,8 |
|
||
|
445989,4 |
433691,9 |
419733,6 |
388325 |
420228,1 |
410911,2 |
396506,2 |
|
||
|
429424,3 |
422828,6 |
411169,7 |
397936,3 |
368158,8 |
398405,1 |
389572,1 |
|
||
|
444246,5 |
450250,1 |
443334,6 |
431110,3 |
417235,1 |
386013,4 |
417726,7 |
|
||
|
473976,4 |
468372,2 |
474701,9 |
467410,8 |
454522,7 |
439894 |
406976,7 |
|
||
|
486297,5 |
479639 |
473967,9 |
480373,2 |
472995 |
459952,9 |
445149,4 |
|
||
|
455348,6 |
453907,1 |
447692,1 |
442398,7 |
448377,4 |
441490,6 |
429317,2 |
|
||
|
477658,6 |
486344,7 |
484805,1 |
478167 |
472513,3 |
478899 |
471543,4 |
|
||
|
305040 |
299838,8 |
305291,2 |
304324,8 |
300157,9 |
296608,9 |
300617,4 |
|
||
|
192299,1 |
213570,2 |
209928,6 |
213746,1 |
213069,5 |
210152,1 |
207667,3 |
|
||
|
222053 |
235208,1 |
261225,6 |
256771,5 |
261440,8 |
260613,1 |
257044,8 |
|
||
|
229013,1 |
222156,1 |
235317,3 |
261346,9 |
256890,7 |
261562,2 |
260734,1 |
|
||
|
186748,2 |
186734 |
181142,9 |
191874,4 |
213098,5 |
209465 |
213274 |
|
||
|
9583,405 |
9882,972 |
9882,219 |
9586,333 |
10154,26 |
11277,47 |
11085,18 |
|
||
|
-29290,4 |
-33696,3 |
-34749,7 |
-34747 |
-33706,6 |
-35703,5 |
-39652,9 |
|
||
|
41486,77 |
43123,75 |
49610,59 |
51161,37 |
51157,47 |
49625,75 |
52565,73 |
|
||
|
564,5043 |
524,6565 |
545,3583 |
627,3932 |
647,0049 |
646,9556 |
627,585 |
|
||
|
-111553 |
-116384 |
-108168 |
-112436 |
-129349 |
-133393 |
-133382 |
|
||
|
-207513 |
-234453 |
-244605 |
-227338 |
-236309 |
-271855 |
-280353 |
|
||
|
-128889 |
-150279 |
-169788 |
-177140 |
-164636 |
-171132 |
-196874 |
|
||
|
-161633 |
-148653 |
-173323 |
-195824 |
-204303 |
-189882 |
-197374 |
|
||
|
-235880 |
-243762 |
-224186 |
-261391 |
-295324 |
-308113 |
-286363 |
|
||
|
-204589 |
-234539 |
-242376 |
-222911 |
-259905 |
-293645 |
-306361 |
|
||
|
-157508 |
-157120 |
-180121 |
-186140 |
-171191 |
-199602 |
-225514 |
|
||
|
-131674 |
-119704 |
-119409 |
-136890 |
-141464 |
-130103 |
-151695 |
|
||
|
-135601 |
-126468 |
-114972 |
-114689 |
-131478 |
-135871 |
-124960 |
|
||
|
-66084,1 |
-65531,5 |
-61117,8 |
-55562 |
-55425,1 |
-63538,9 |
-65662 |
|
||
|
-77163,6 |
-69833,7 |
-69249,8 |
-64585,7 |
-58714,6 |
-58570 |
-67144,2 |
|
||
|
-41117 |
-41325,3 |
-37399,7 |
-37087 |
-34589,1 |
-31444,9 |
-31367,4 |
|
||
|
1146,656 |
1098,516 |
1104,081 |
999,203 |
990,8488 |
924,1127 |
840,108 |
|
||
|
36705,9 |
34967,85 |
33499,79 |
33669,51 |
30471,2 |
30216,44 |
28181,29 |
|
||
|
133698,3 |
129009,8 |
122901,1 |
117741,3 |
118337,8 |
107096,8 |
106201,3 |
|
||
|
154192,7 |
141308,8 |
136353,4 |
129896,9 |
124443,5 |
125073,9 |
113193 |
|
||
|
174895,9 |
173740,9 |
159223,6 |
153640 |
146365 |
140220,1 |
140930,5 |
|
||
|
239143,7 |
235483,1 |
233928 |
214381,7 |
206863,7 |
197068,5 |
188795 |
|
||
|
247291,6 |
236161,5 |
232546,5 |
231010,8 |
211708,3 |
204284 |
194611 |
|
||
|
210244,6 |
210704,2 |
201220,8 |
198140,7 |
196832,2 |
180385,5 |
174059,7 |
|
||
|
178988,3 |
183693,5 |
184095,1 |
175809,4 |
173118,2 |
171975 |
157605,3 |
|
||
|
209454,5 |
213537,1 |
219150,6 |
219629,7 |
209744,6 |
206534 |
205170,1 |
|
||
|
169950,9 |
165639,4 |
168867,9 |
173307,1 |
173686 |
165868,7 |
163329,8 |
|
||
|
177500 |
183519,5 |
178863,8 |
182350,1 |
187143,7 |
187552,9 |
179111,5 |
|
||
|
152057,5 |
150516,8 |
155621,2 |
151673,3 |
154629,6 |
158694,5 |
159041,5 |
|
||
|
158052 |
161414,6 |
159779,2 |
165197,7 |
161006,8 |
164145,1 |
168460,2 |
|
||
|
248440,4 |
246639,2 |
251886,5 |
249334,4 |
257790 |
251250,1 |
256147,3 |
|
||
|
194851,6 |
182087,4 |
180767,3 |
184613,1 |
182742,6 |
188939,9 |
184146,7 |
|
||
|
202990,4 |
213384,4 |
199406,2 |
197960,5 |
202172,2 |
200123,8 |
206910,5 |
|
||
|
209276,5 |
206516,5 |
217091 |
202870 |
201399,1 |
205684 |
203600 |
|
||
|
197808,8 |
197288,4 |
194686,5 |
204655,3 |
191248,9 |
189862,3 |
193901,7 |
|
||
|
194906,2 |
196641,9 |
196124,6 |
193538 |
203447,9 |
190120,6 |
188742,2 |
|
||
|
170029,7 |
170176,9 |
171692,3 |
171240,6 |
168982,2 |
177634,8 |
165998,4 |
|
||
|
133525 |
136041,8 |
136159,5 |
137372 |
137010,6 |
135203,6 |
142126,6 |
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
сумма |
3772290 |
3726009 |
3670370 |
3534234 |
3337414 |
3165485 |
3030634 |
сумма |
||
r |
1,031974 |
1,019313 |
1,004092 |
0,966849 |
0,913006 |
0,865972 |
0,829081 |
|||
r^2 |
1,06497 |
1,038999 |
1,0082 |
0,934798 |
0,83358 |
0,749908 |
0,687376 |
6,317831 |
||
r^2/(129-7) |
0,008801 |
0,008587 |
0,008332 |
0,007726 |
0,006889 |
0,006198 |
0,005681 |
0,052213 |
||
Приложение 13
Проверка гипотезы о равенстве дисперсий и средних для конечных разностей
