- •Брайан Грин Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
- •Аннотация
- •Брайан Грин Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
- •Предисловие
- •Часть I. На переднем краю познания Глава 1. Связанные струной
- •Три конфликта
- •Вселенная в своем самом малом, или что мы знаем о материи
- •Взаимодействия, или куда делся фотон
- •Теория струн: основная идея
- •Современное состояние теории струн
- •Часть II. Дилемма пространства, времени и квантов Глава 2. Пространство, время и взгляд наблюдателя
- •Интуиция и ее изъяны
- •Принцип относительности
- •Скорость света
- •Истина и ее последствия
- •Влияние на время
- •Жизнь на бегу
- •И все же: кто движется?
- •Влияние движения на пространство
- •Движение в пространстве‑времени
- •Глава 3. 0б искривлениях и волнистой ряби
- •Ньютоновский взгляд на гравитацию
- •Несовместимость ньютоновской теории тяготения и специальной теории относительности
- •Самая счастливая идея Эйнштейна
- •Ускорение и искривление пространства и времени
- •Основы общей теории относительности
- •Некоторые замечания
- •Разрешение противоречия
- •Снова об искривлении времени
- •Экспериментальное подтверждение общей теории относительности
- •Черные дыры, Большой взрыв и расширение Вселенной
- •Верна ли общая теория относительности?
- •Глава 4. Микроскопические странности
- •Квантовая теория
- •На кухне слишком жарко
- •Деление на порции на рубеже веков
- •Что представляют собой порции?
- •Волна или частица?
- •Частицы материи также являются волнами
- •Волны чего?
- •Точка зрения Фейнмана
- •Квантовые чудеса
- •Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика
- •Суть квантовой механики
- •Квантовая теория поля
- •Частицы‑посланники
- •Калибровочная симметрия
- •Общая теория относительности и квантовая механика
- •Часть III. Космическая симфония Глава 6 Только музыка, или Суть теории суперструн
- •Краткая история теории струн
- •Снова атомы в духе древних греков?
- •Объединение через теорию струн
- •Музыка теории струн
- •Три следствия жестких струн
- •Гравитация и квантовая механика в теории струн
- •Ловкость рук?
- •Более точный ответ
- •Не только струны?
- •Глава 7. «Супер» в суперструнах
- •Характер физических законов
- •Суперсимметрия и суперпартнеры
- •Доводы в пользу суперсимметрии — до появления теории струн
- •Суперсимметрия в теории струн
- •Суперпроблема изобилия
- •Глава 8. Измерений больше, чем видит глаз
- •Иллюзия привычного
- •Идея Калуцы и уточнение Клейна
- •Взад и вперед по Садовому шлангу
- •Объединение в высших измерениях
- •Современное состояние теории Калуцы‑Клейна
- •Дополнительные измерения и теория струн
- •Некоторые вопросы
- •Физические следствия дополнительных измерений
- •Как выглядят свернутые измерения?
- •Глава 9. Дымящееся ружье: экспериментальные свидетельства
- •Перекрестный огонь критики
- •Дорога к эксперименту
- •Перебирая возможности
- •Суперчастицы
- •Частицы с дробным электрическим зарядом
- •Некоторые более отдаленные перспективы
- •Оценка ситуации
- •Часть IV. Теория струн и структура пространства‑времени Глава 10. Квантовая геометрия
- •Суть римановой геометрии
- •Космологическая сцена
- •Существенно новая черта
- •Физические свойства намотанных струн
- •Спектр состояний струны
- •Спор двух профессоров
- •Три вопроса
- •Два взаимосвязанных понятия расстояния в теории струн
- •Минимальный размер
- •Насколько общий этот вывод?
- •Физика и математика зеркальной симметрии
- •Глава 11. Разрывая ткань пространства
- •Волнующая возможность
- •Зеркальная перспектива
- •Медленный прогресс
- •Рождение стратегии
- •Поздние вечера в последней обители Эйнштейна
- •О шести банках пива и работе по выходным
- •Момент истины
- •Подход Виттена
- •Следствия
- •Глава 12. За рамками струн: в поисках м‑теории
- •Краткое изложение результатов второй революции в теории суперструн
- •Приближенный метод
- •Классический пример теории возмущений
- •Использование теории возмущений в теории струн
- •Приближает ли к ответу приближение?
- •Уравнения теории струн
- •Дуальность
- •Мощь симметрии
- •Дуальность в теории струн
- •Предварительные итоги
- •Проблески м‑теории
- •М‑теория и паутина взаимосвязей
- •Общая панорама
- •Сюрприз в м‑теории: демократия в протяжении
- •Помогает ли это в неразрешенных вопросах теории струн?
- •Глава 13. Черные дыры с точки зрения теории струн и м‑теории
- •Черные дыры и элементарные частицы
- •Позволяет ли теория струн продвигаться вперед?
- •Убежденно разрывая ткань пространства
- •Шквал электронной почты
- •Снова о черных дырах и элементарных частицах
- •«Таяние» черных дыр
- •Энтропия черной дыры
- •Насколько черно черное?
- •Ваш выход, теория струн!
- •Нераскрытые тайны черных дыр
- •Глава 14. Размышления о космологии
- •Стандартная космологическая модель
- •Проверка модели Большого взрыва
- •От планковских времен до сотых долей секунды после Большого взрыва
- •Космологическая загадка
- •Инфляция
- •Космология и теория суперструн
- •В начале был комок планковских размеров
- •Почему три?
- •Космология и вид пространств Калаби‑Яу
- •М‑теория и слияние всех сил природы
- •Рассуждения о космологии и окончательная теория
- •Часть V. Единая теория в XXI веке Глава 15. Перспективы
- •Что является фундаментальным принципом теории струн?
- •Что есть пространство и время на самом деле, и можем ли мы без них обойтись?
- •Приведет ли теория струн к переформулировке квантовой механики?
- •Можно ли теорию струн проверить экспериментально?
- •Существуют ли пределы познания?
- •Достичь звезд
- •Примечания Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15
- •Словарь научных терминов
- •Рекомендуемая литература
Медленный прогресс
В течение 1992 г. мы с Плессером время от времени возвращались к попыткам доказать, что структура пространства может подвергаться перестройкам с разрывами пространства. Наши расчеты частично подтверждали эту гипотезу в частных случаях, но строгого доказательства найти не удавалось. Весной Плессер съездил с докладом в Принстонский институт перспективных исследований. Там он встретился с Виттеном и в частной беседе рассказал ему о наших попытках дать интерпретацию математической процедуры флоп‑перестройки с разрывом пространства в рамках теории струн. После того, как Плессер изложил свои соображения, Виттен отвернулся от доски и некоторое время, возможно минуту или две, молча смотрел в окно своего кабинета. Затем он повернулся к Плессеру и сказал, что если наши идеи окажутся правильными, то «это будет впечатляюще». Такая реакция Виттена побудила нас работать с удвоенной энергией. Однако вскоре исследования застопорились, и мы обратились к другим вопросам в теории струн.
Даже работая над другими задачами, я постоянно ловил себя на том, что возвращаюсь к мысли о возможности перестроек с разрывами пространства. Месяц от месяца во мне укреплялась уверенность, что они должны быть неотъемлемой частью теории струн. Из расчетов, сделанных ранее вместе с Плессером, а также из стимулирующих обсуждений с Дэвидом Моррисоном, математиком университета Дьюка, казалось, следовало, что возможность перестроек является естественным следствием зеркальной симметрии. Во время моего пребывания в Дьюке Моррисон и я, используя результаты гостившего в то же время в Дьюке Шелдона Каца из Оклахомского университета, наметили стратегию обоснования появления флоп‑перестроек в теории струн. Однако когда мы приступили к вычислениям, оказалось, что они крайне громоздки: даже с использованием самого быстрого в мире компьютера на расчеты ушла бы сотня лет. Мы продвигались вперед, но нам явно не хватало новой идеи, которая значительно повысила бы эффективность нашего вычислительного метода. Не подозревая об этом, Виктор Батырев, математик из университета города Эссен, дал нам такую идею в двух своих статьях, опубликованных весной и летом 1992 г.
Батырев очень интересовался зеркальной симметрией, особенно после успешного решения Канделасом и соавторами описанной в конце главы 10 задачи о подсчете числа сфер. Однако Батырев, будучи математиком, был сбит с толку приемами, которые мы с Плессером использовали для нахождения зеркальных пар пространств Калаби— Яу. Хотя в нашем подходе применялись известные теоретикам методы, Батырев позже признался мне, что наша статья произвела на него впечатление «черной магии». Это было следствием исторически сложившихся культурных различий между математикой и физикой, и по мере размытия теорией струн границ каждой науки различия в языке, методах и стиле исследований становились все более явными. Физики больше похожи на композиторов‑авангардистов, стремящихся обойти устоявшиеся правила и расширить границы дозволенного при поиске решения задачи. Математики же больше похожи на классических композиторов, обычно скованных рамками гораздо более жесткой схемы и с неохотой воспринимающих переход к следующему шагу до тех пор, пока предыдущие шаги не были обоснованы со всей строгостью. У каждого подхода свои преимущества и недостатки, и каждый из них обладает своими уникальными возможностями для творческих исследований. Так же, как современную музыку нелепо сравнивать с классической, эти подходы нельзя сравнивать, чтобы выяснить, какой из них лучше — используемые методы в значительной степени определяются вкусами и подготовкой.
Батырев решил перевести схему построения зеркальных многообразий на более понятный математический язык, и это ему удалось. Под впечатлением белее ранней работы тайваньского математика Ши‑Шир Роана, Батыреву удалось сформулировать последовательную математическую процедуру построения пар пространств Калаби‑Яу, являющихся зеркальными близнецами друг друга. Его процедура сводится к нашей с Плессером, если применять ее для рассмотренных нами примеров, но приводит к более общей формулировке в терминах знакомых математикам понятий.
Оборотной стороной медали было то, что в работах Батырева использовались знания из неизвестных большинству физиков областей математики. Мне, например, удалось уловить суть его аргументов, но понимание многих важнейших моментов давалось с огромным трудом. Одно, тем не менее, было ясно: методы, описанные в его статье, при правильном их осознании и применении вполне могут дать второе дыхание исследованиям флоп‑перестроек с разрывом пространства.
К концу лета, находясь под впечатлением результатов этих работ, я решил вернуться к задаче о флоп‑перестройках и сконцентрировать на ней все свое внимание. От Моррисона я узнал, что он собирается провести год в Институте перспективных исследований, а Аспинуолл, по моим сведениям, тоже будет там на стажировке. После нескольких телефонных звонков и переписки по электронной почте я договорился, что тоже проведу осень 1992 г. в этом институте.