Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Колоквиум 21-30.doc
Скачиваний:
7
Добавлен:
14.07.2019
Размер:
126.46 Кб
Скачать

21. Распространение колебаний в упругой среде. Уравнение одномерной волны. Распространение колебаний в упругих средах

Среда называется упругой, если между ее частицами существуют силы взаимодействия, препятствующие какой-либо деформации этой среды. Когда какое-либо тело совершает колебания в упругой среде, то оно воздействует на частицы среды, прилегающие к телу, и заставляет их совершать вынужденные колебания. Среда вблизи колеблющегося тела деформируется, и в ней возникают упругие силы. Эти силы воздействуют на все более удаленные от тела частицы среды, выводя их из положения равновесия. Постепенно все частицы среды вовлекаются в колебательное движение.

Тела, которые вызывают распространяющиеся в среде упругие волны, являются источниками волн (колеблющиеся камертоны, струны музыкальных инструментов).

Упругими волнами называются механические возмущения (деформации), производимые источниками, которые распространяются в упругой среде. Упругие волны в вакууме распространяться не могут.

При описании волнового процесса среду считают сплошной и непрерывной, а ее частицами являются бесконечно малые элементы объема (достаточно малые по сравнению с длиной волны), в которых находится большое количество молекул. При распространении волны в сплошной среде частицы среды, участвующие в колебаниях, в каждый момент времени имеют определенные фазы колебания.

Геометрическое место точек среды, колеблющихся в одинаковых фазах, образует волновую поверхность.

Волновую поверхность, отделяющую колеблющиеся частицы среды от частиц, еще не начавших колебаться, называют фронтом волны В зависимости от формы фронта волны различают волны плоские, сферические и др.

Линия, проведенная перпендикулярно волновому фронту в направлении распространения волны, называется лучом. Луч указывает направление распространения волны.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны. Плоские волны можно получить на поверхности воды в плоской ванночке с помощью колебаний плоского стержня.

В сферической волне волновые поверхности представляют собой концентрические сферы. Сферическую волну может создать пульсирующий в однородной упругой среде шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Лучами являются радиусы сфер.

Уравнение плоской одномерной волны и определяет смещение любой точки среды, находящейся на расстоянии х от излучателя в данный момент.

Ниже приведена фаза волны.

22. Энергия, переносимая волной. Отражение одномерной волны.

Распространение механической волны, представляющее собой последовательную передачу движения от одного участка среды к другому, означает тем самым передачу энергии. Эту энергию доставляет источник волны, когда он приводит в движение непосредственно прилегающий к нему слой среды. От этого слоя энергия передается следующему слою и т. д. Таким образом, распространение волны создает в среде поток энергии, расходящийся от источника.

Яркий пример такого переноса энергии без переноса вещества дают нам взрывные волны. На расстояниях во много десятков метров от места разрыва бомбы, куда не долетают ни осколки, ни поток горячего воздуха, взрывная волна выбивает стекла, ломает стены и т. п., т. е. производит большую механическую работу. Но энергия переносится, конечно, и самыми слабыми волнами; например, летящий комар излучает звуковую волну («комариный писк»), мощность которой, т. е. энергия, излучаемая в 1 с, составляет около 10-10 Вт.

W = mω2A2/2 , где А — амплитуда колебания, m – масса

Первый пример волн в ограниченном пространстве — это волны в пространстве, ограниченном с одной стороны. Давайте возьмем простой случай одномерной волны на струне. Можно было бы рассмотреть плоскую звуковую волну в пространстве, ограниченном с одной стороны стенкой, или какие-то другие примеры той же природы, но для наших теперешних целей вполне достаточно простой струны. Предположим, что один конец струны закреплен, ну, например, вмурован в «абсолютно жесткую» стенку. Математически это можно описать, указав, что перемещение струны у в точке x=0 должно быть нулем, ибо конец струны не может двигаться. Далее, если бы в этом деле не участвовала стенка, то, как мы знаем, общее решение, описывающее движение струны, можно было бы представить в виде суммы двух функций F(x-ct) и G(x+ct), причем первая описывает волну, бегущую по струне в одну сторону, а вторая — в другую, так что

y=F(x-ct)+G(x+ct)

будет общим решением для любой струны. Но нам, помимо этого, нужно еще удовлетворить условию неподвижности одного конца. Если в уравнении мы положим х=0 и посмотрим, какие будут у в любой момент t, то получим y=F(-ct)+G(+ct). Но эта сумма должна быть нулем в любой момент времени, а это означает, что функция G(+ct) должна быть равна -F(-ct). Другими словами, функция G от некоторой величины должна быть равна функции -F от той же величины со знаком минус. Подставляя снова полученный результат в уравнение, находим решение поставленной задачи:

y=F(x-ct)-F(-x-ct).

Ясно, что это выражение всегда даст y=0, если х положить равным нулю.

Ниже представлена волна, идущая в отрицательном x-направлении вблизи точки х=0, и гипотетическая волна, идущая в противоположном направлении с обратным знаком и с

другой стороны от начала координат.

«Гипотетическая», потому что с другой стороны, конечно, никакой колеблющейся струны нет. Истинное же движение струны должно рассматриваться как сумма этих двух волн в области положительных х. Достигнув начала координат, они в точке х=0 полностью уничтожат друг друга, а затем вторая (отраженная) волна, идущая, разумеется, в противоположном направлении, окажется единственной волной в области положительных х. Эти результаты эквивалентны следующему утверждению: волна, достигнув защемленного конца струны, отражается от него с изменением знака. Такое отражение всегда можно понять, если представить себе, как нечто дошедшее до конца струны вылетит затем из-за стены «вверх ногами». Короче говоря, если мы предположим, что струна бесконечна и что, где бы ни находилась волна, бегущая в одном направлении, всегда существует симметричная ей относительно точки х=0 другая волна, бегущая в противоположном направлении, то в самой точке х=0 никакого перемещения не будет, а поэтому безразлично, защемлена ли струна в этом месте или нет.

23.Стоячие волны.

Стоя́чая волна́ — колебания в распределённых колебательных системах с характерным расположением чередующихся максимумов (пучностей) и минимумов (узлов) амплитуды. Практически такая волна возникает при отражениях от преград и неоднородностей в результате наложения отражённой волны на падающую. При этом крайне важное значение имеет частота, фаза и коэффициент затухания волны в месте отражения.

Примерами стоячей волны могут служить колебания струны, колебания воздуха в органной трубе.

24. Продольные и поперечные волны.

Продольные

колебания среды происходят вдоль направления распространения волн,

при этом возникают области сжатия и разрежения среды. (возникают в любой среде (жидкости, в газах, в тв. телах).)

Поперечные

колебания среды происходят перпендикулярно направлению их распространения,

при этом происходит сдвиг слоев среды.

- возникают только в твердых телах.

25. Интерференция волн. Принцип Гюйгенса – Френеля.

Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких согласованных волн, одновременно распространяющихся в пространстве. Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не перпендикулярны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью согласованные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Принцип Гюйгенса — Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Огибающая вторичных волн становится фронтом волны в следующий момент времени. Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.