
- •Предмет химии. Значение химии в изучении природы и развитии техники. Роль химии для металлургии.
- •Важнейшие классы неорганических соединений: оксиды, кислоты, основания, соли. Классификация, номенклатура, получение, свойства.
- •Квантово-механические представления об электронной структуре атомов.
- •Периодический закон и периодическая система д.И. Менделеева в свете учения о строении атома.
- •Зависимость свойств элементов и их соединений от строения атома.
- •Виды и характеристики химической связи.
- •Ковалентная связь, способы образования ковалентной связи. Метод валентных связей.
- •Пространственная структура молекулярного явления гибридизации.
- •Аморфное и кристаллическое состояние твердых тел. Строение твердого тела. Классификация кристаллов по характеру химической связи.
- •Энергетика химических процессов. Внутренняя энергия и энтальпия.
- •Энтропия, ее изменение при химических реакциях.
- •Энергия Гиббса и направленность химических процессов.
- •Скорость гомогенных, гетерогенных химических реакций. Закон действия масс.
- •Факторы, влияющие на скорость химической реакции.
- •Каталитические системы и катализаторы. Механизмы гомогенного и гетерогенного катализа.
- •Химическое равновесие. Константа химического равновесия и ее связь с термодинамическими функциями. Смещение равновесия.
- •Растворы. Классификация растворов. Способы выражения концентрации растворов.
- •Теория электролитической диссоциации. Диссоциация сильных и слабых электролитов. Закон разбавления Оствальда. Ионные уравнения реакций. Водородные показатели среды.
- •Окислительно-восстановительные процессы. Степень окисления. Составление уравнений овр методом электронного баланса с учетом рН среды.
- •Электрохимические процессы. Уравнение Нернста. Электродные потенциалы металлических, газовых и окислительно-восстановительных электродов.
- •Гальванический элемент. Анодные и катодные процессы. Условная схема гальванического элемента, эдс и ее измерение.
- •Электролиз растворов и расплавов электролитов. Применение электролиза.
- •Основные виды коррозии металлов. Методы защиты от коррозии: легирование, электрохимическая защита, защитные покрытия.
- •Окислительно-восстановительные реакции с участием металлов. Взаимодействие металлов с кислотами.
- •Дисперсные системы и их классификации. Коллоидные растворы.
- •Химические свойства материалов, применяемых в металлургии.
- •Качественный и количественный анализ веществ.
- •Органические полимерные материалы. Применение полимеров. Получение полимеров.
- •Кислотно-основные и окислительно-восстановительные свойства р-, d- элементов и их соединений.
- •Способы получения металлов.
- •Сплавы металлов.
- •Комплексные соединения d- элементов.
Окислительно-восстановительные реакции с участием металлов. Взаимодействие металлов с кислотами.
С кислотами могут реагировать металлы, способные вытеснить атомы водорода из молекулы кислоты, т. е. стоящие в РСЭП (Электрохимический ряд активности металлов или ряд стандартных электронных потенциалов). Принято, чтобы металлы взаимодействовали с растворами кислот, однако большинство стоящих до водорода металлов бурно реагируют с водой.
Взаимодействие всех кислот, кроме азотной и серной, с металлами, стоящими в РСЭП до водорода:
Происходит реакция замещения, которая также является окислительно-восстановительной:
Mg+2HCl=MgCl2+H2↑
2Al+3H2CO3=Al2(CO3)3+3H2↑
[править]
Взаимодействие серной кислоты H2SO4 с этими металлами:
Кислота очень разбавлена:
Mg+H2SO4=MgSO4+H2↑
Концентрация кислоты повышается для каждого из уравнения относительно предыдущего:
Mg+2H2SO4=MgSO4+SO2↑+2H2O
3Mg+4H2SO4=3MgSO4+S+4H2O
4Mg+5H2SO4=4MgSO4+4H2S+H2O
[править]
Реакции для азотной кислоты (HNO3):
4Mg+10HNO3=4Mg(NO3)2+N2O↑+5H2O
5Mg+12HNO3=5Mg(NO3)2+N2↑+6H2O
В первом случае кислота менее концентрирована, чем во втором.
Дисперсные системы и их классификации. Коллоидные растворы.
Диспе́рсная систе́ма — это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).
Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.
Диспе́ргатор РПГ- это аппарат, позволяющий диспергировать и получить коллоидный раствор двух и более практически несмешиваемых веществ. Обычно бывают рециркуляционного, встроенного и погружного типа.
Раствор — однофазная система переменного состава, состоящая из двух или более компонентов. Растворы — гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов[1].
Коллоидные и ионные растворы (изучением коллоидных систем занимается коллоидная химия) отличаются главным образом размерами частиц.
В ионных растворах размер частиц менее 1×10−9 м, частицы в таких растворах невозможно обнаружить оптическими методами; в то время как в коллоидных растворах размер частиц 1×10−9 м — 5×10−7 м, частицы в таких растворах можно обнаружить при помощи ультрамикроскопа (см. эффект Тиндаля).
Химические свойства материалов, применяемых в металлургии.
Химические свойства металлов
В химическом отношении все металлы характеризуются сравнительной легкостью отдачи валентных электронов и способностью образовывать положительно заряженные ионы. Следовательно, металлы в свободном состоянии являются восстановителями.
Восстановительная способность различных металлов неодинакова и определяется положением в электрохимическом ряду напряжения металлов:
Li K Rb Cs Ca Na Mg Al Mn Zn Cr Cr Fe Ni Sn Pb Cu Hg Ag Pt Ag Pt Au
Металлы размещены в порядке убывания их восстановительных свойств и усиления окислительных свойств их ионов. Этот ряд характеризует химическую активность металлов только в окислительно-восстановительных реакциях, протекающих в водной среде.
Характерными свойствами для металлов являются следующие:
Восстановление неметаллов Реакции с галогенами и кислородом воздуха протекают с различными скоростями и при различных температурах с разными металлами. Так, щелочные металлы легко окисляются кислородом воздуха и взаимодействуют с простыми веществами, железо и медь взаимодействуют с простыми веществами только при нагревании, золото и платиновые металлы не окисляются вообще. Многие металлы образуют на поверхности оксидную пленку, которая защищает их от дальнейшего окисления.
2Мg + О2 = 2МgО
4Аl + ЗО2 = 2А12О3
2К + Сl2 = 2КСl
Менее энергично металлы взаимодействуют с серой:
Сu + S = СuS
Fе + S = FеS
Трудно вступают в реакцию с азотом и фосфором:
ЗМg + N2 = Мg3N2 (нитрид магния)
ЗСа + 2Р = Са3Р2 (фосфид кальция)
Активные металлы взаимодействуют с водородом:
Са + Н2 = СаН2 (гидрид кальция)
Взаимодействие с водой
Активные металлы (щелочные металлы) взаимодействуют с водой при обычных условиях с образованием гидроксидов и выделением водорода:
2Nа + 2Н2О == 2NаОН + Н2
Са + 2Н2О = Са(ОН)2 + Н2
2Аl + 6Н2O = 2Аl(ОН)3 + ЗН2