
- •Предмет химии. Значение химии в изучении природы и развитии техники. Роль химии для металлургии.
- •Важнейшие классы неорганических соединений: оксиды, кислоты, основания, соли. Классификация, номенклатура, получение, свойства.
- •Квантово-механические представления об электронной структуре атомов.
- •Периодический закон и периодическая система д.И. Менделеева в свете учения о строении атома.
- •Зависимость свойств элементов и их соединений от строения атома.
- •Виды и характеристики химической связи.
- •Ковалентная связь, способы образования ковалентной связи. Метод валентных связей.
- •Пространственная структура молекулярного явления гибридизации.
- •Аморфное и кристаллическое состояние твердых тел. Строение твердого тела. Классификация кристаллов по характеру химической связи.
- •Энергетика химических процессов. Внутренняя энергия и энтальпия.
- •Энтропия, ее изменение при химических реакциях.
- •Энергия Гиббса и направленность химических процессов.
- •Скорость гомогенных, гетерогенных химических реакций. Закон действия масс.
- •Факторы, влияющие на скорость химической реакции.
- •Каталитические системы и катализаторы. Механизмы гомогенного и гетерогенного катализа.
- •Химическое равновесие. Константа химического равновесия и ее связь с термодинамическими функциями. Смещение равновесия.
- •Растворы. Классификация растворов. Способы выражения концентрации растворов.
- •Теория электролитической диссоциации. Диссоциация сильных и слабых электролитов. Закон разбавления Оствальда. Ионные уравнения реакций. Водородные показатели среды.
- •Окислительно-восстановительные процессы. Степень окисления. Составление уравнений овр методом электронного баланса с учетом рН среды.
- •Электрохимические процессы. Уравнение Нернста. Электродные потенциалы металлических, газовых и окислительно-восстановительных электродов.
- •Гальванический элемент. Анодные и катодные процессы. Условная схема гальванического элемента, эдс и ее измерение.
- •Электролиз растворов и расплавов электролитов. Применение электролиза.
- •Основные виды коррозии металлов. Методы защиты от коррозии: легирование, электрохимическая защита, защитные покрытия.
- •Окислительно-восстановительные реакции с участием металлов. Взаимодействие металлов с кислотами.
- •Дисперсные системы и их классификации. Коллоидные растворы.
- •Химические свойства материалов, применяемых в металлургии.
- •Качественный и количественный анализ веществ.
- •Органические полимерные материалы. Применение полимеров. Получение полимеров.
- •Кислотно-основные и окислительно-восстановительные свойства р-, d- элементов и их соединений.
- •Способы получения металлов.
- •Сплавы металлов.
- •Комплексные соединения d- элементов.
Факторы, влияющие на скорость химической реакции.
Скорость химической реакции (v) характеризуется изменением концентрации реагирующих веществ (моль/л или моль/см3) в единицу времени (сек., мин., ч.).
Для гомогенной (однородной) системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени в единице объема системы. Для гетерогенной системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени на единице поверхности раздела фаз.
Факторы, влияющие на скорость химической реакции
1) Природа реагирующих веществ (характер связи в молекулах реагентов);
2) Концентрация реагентов;
3) Температура;
4) Катализатор;
5) Давление (для газов);
6) Излучение (ИК-, УФ-, рентгеновское, радиоактивное и др.);
7) Площадь поверхности раздела фаз (для гетерогенных реакций).
Влияние концентрации реагирующих веществ выражается законом действия масс: при постоянной температуре скорость химической реакции, протекающей в однородной среде, пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов.
Например, для обратимой гомогенной реакции, выражающейся уравнением aA + bB ↔ cC + dD, в соответствии с законом действия масс, можно записать выражение скорости прямой и обратной реакций:
где k1 и k2 – константы скоростей прямой и обратной реакций.
Физический смысл константы скорости заключается в том, что она показывает численное значение скорости химической реакции, с которой реагируют вещества при их концентрации (или произведении концентраций), равной единице. Константа скорости реакции зависит от природы реагентов, температуры, наличия катализатора, но не зависит от концентрации реагентов.
Каталитические системы и катализаторы. Механизмы гомогенного и гетерогенного катализа.
Ката́лиз (греч. κατάλυσις восходит к καταλύειν — разрушение) — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.[1]
Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.
Катализ может быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость реакции уменьшается). Для обозначения отрицательного катализа часто используют термин ингибирование.
Гомогенный катализ
Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:
H2О2 + I → H2О + IO
H2О2 + IO → H2О + О2 + I
При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.
Катализ бывает гомогенным и гетерогенным (контактным). В гомогенном катализе катализатор состоит в той же фазе, что и реактивы реакции, в то время, как гетерогенные катализаторы отличаются фазой.
Гетерогенный катализ
При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.
Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.
1.Диффузия реагирующих веществ к поверхности твердого вещества
2.Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их
3.Химическая реакция между реагирующими молекулами
4.Десорбция продуктов с поверхности катализатора
5.Диффузия продукта с поверхности катализатора в общий поток
Примером гетерогенного катализа является окисление SO2 в SO3 на катализаторе V2O5 при производстве серной кислоты (контактный метод).