
- •Абсолютные способы формирования исполнительного адреса операндов
- •Встраиваемые и промышленные компьютеры
- •В чем суть mmx-технологии и потоковых simd-расширений?
- •В чем суть матричного и векторно-конвейерного способов организации simd-архитектуры
- •Иерархическая структура памяти компьютера
- •Как определяется энергоэффективность процессора?
- •Как осуществляется декодирование команд x86 в процессоре Intel Nehalem?
- •Как осуществляется декодирование команд x86 в ядре amd k10?
- •Какие новые возможности появились у процессора с введением расширения команд sse-2, sse-3?
- •Какими преимуществами обладают блейд-серверы?
- •Какими характеристиками должен обладать пк?
- •Классификация mimd-систем по способу взаимодействия процессоров
- •Классификация архитектуры sisd с краткой характеристикой классов
- •Классификация интерфейсов
- •Классификация ноутбуков
- •Классификация методов построения центрального устройства управления процессора
- •Классификация микро-эвм с краткой характеристикой классов
- •Классификация пк по способу использования
- •Классификация серверов с пояснениями
- •Классификация, состав, платформы, производители карманных пк
- •Классификация способов организации simd-архитектуры с пояснениями
- •Конвейерная технология выполнения команд
- •Концепция виртуальной памяти
- •Косвенная адресация операндов
- •Логическая организация центрального процессора эвм
- •Методы обновления строк в основной и кэш-памяти
- •Методы повышения пропускной способности оперативной памяти (организация памяти на ddr sdram)
- •Методы повышения пропускной способности оперативной памяти (расслоение обращений)
- •Методы преобразования виртуального адреса в физический при странично-сегментном распределении памяти с использованием tlb
- •Методы замещения строк в кэш-памяти
- •Методы ускорения процессов обмена информацией между оп и внешними запоминающими устройствами
- •Механизм преобразования виртуального адреса в физический при страничной организации памяти
- •Механизм стековой адресации по способу lifo
- •Модульная структура процессора Intel Nehalem
- •Обобщенная структура эвм и основные направления её развития
- •Обобщенный формат команд x86
- •Общие принципы организации оперативной памяти компьютера
- •Объяснить суть процедуры переименования регистров в современных процессорах
- •Определить назначение, количество, принцип действия исполнительных устройств процессора Intel Nehalem
- •Определить назначение, количество, принцип действия исполнительных устройств ядра amd k10
- •Определить назначение, структуру, количество регистров mmx-технологии и расширений sse, sse2
- •Определить назначение, структуру, количество основных функциональных регистров ia-32
- •Определить назначение, структуру, количество регистров процессора обработки чисел с плавающей точкой ia-32 (x87)
- •Регистры ммх-технологии
- •Организация многоуровневой кэш-памяти
- •Основные отличительные черты epic-концепции
- •Основные характерные черты cisc-архитектуры
- •Основные характерные черты risc-архитектуры
- •Основные характерные черты vliw-архитектуры
- •Основные характерные черты суперскалярной обработки
- •Особенности микроархитектуры Intel Core
- •Особенности микроархитектуры Intel Sandy Bridge
- •Особенности микроархитектуры процессоров Intel Nehalem
- •Особенности архитектуры процессоров x86-64 (amd64, Intel64)
- •Особенности процессоров семейства Intel Westmere
- •Особенности процессорного ядра amd k10
- •Особенности системы команд в ia-64
- •Охарактеризуйте все виды производительности компьютера
- •Перечислить основные требования, которые учитываются при проектировании серверов
- •Принцип работы кэш-памяти с полностью ассоциативным распределением
- •Принцип работы кэш-памяти с частично ассоциативным распределением
- •Программно-управляемая передача данных в компьютере
- •Программно-управляемый приоритет прерывающих программ
- •Прямой доступ к памяти в компьютере
- •Показать развитие и классификацию однопроцессорных архитектур
- •Почему появились многоядерные структуры процессоров и технологии многопоточности?
- •Развитие cisc-системы команд x86 (по годам)
- •Распределение оперативной памяти динамическими разделами
- •Распределение оперативной памяти перемещаемыми разделами
- •Распределение оперативной памяти фиксированными разделами
- •Расширение системы команд aes-ni, avx
- •Реализация адресации «Базирование с индексированием»
- •Реализация адресации операндов «Базирование способом совмещения составляющих исполнительного адреса Аи»
- •Реализация адресации операндов «Базирование способом суммирования»
- •Реализация индексной адресации операндов
- •Регистровые структуры процессоров ia-64
- •Регистровые структуры процессоров x86-64 архитектуры (amd64, Intel64)
- •Сегментное распределение виртуальной памяти
- •Сильносвязанные и слабосвязанные многопроцессорные системы
- •Системная организация эвм на базе чипсетов Intel
- •Страничное распределение виртуальной памяти
- •Стратегия развития процессоров Intel
- •Странично-сегментное распределение памяти
- •Структура кэш-памяти с прямым распределением данных
- •Теги и дескрипторы
- •Типовая структура кэш-памяти
- •Типы данных ia-32 (без mmx и sse)
- •Типы данных ia-64
- •Типы данных mmx-технологии
- •Типы данных sse, sse-2 расширений
- •Форматы команд risc-процессора
- •Формат команд в ia-64, структура пакета инструкций
- •Функции центрального устройства управления процессором
- •Функциональные возможности, назначение, платформы рабочих станций
- •Функциональные возможности, назначение, современные разработки ультра-мобильных и планшетных пк
- •Функциональные возможности, области применения, основные производители мэйнфреймов
- •Функциональные возможности, пути развития, современные разработки супер-эвм
- •Характеристики интерфейсов
- •Характеристики системы прерывания
- •Характерные черты современных универсальных микропроцессоров
- •Центральное устройство управления микропрограммного типа
Какие новые возможности появились у процессора с введением расширения команд sse-2, sse-3?
Расширение SSE-2, В нем используется 144 новых команды, обеспечивающих одновременное выполнение операций над несколькими операндами, которые располагаются в памяти и в 128-разрядных регистрах ХММ. В регистрах могут храниться и одновременно обрабатываться два числа с плавающей запятой в формате двойной точности (64 разряда) или 4 числа в формате одинарной точности (32 разряда), любые целочисленные типы данных, способные разместиться в 128-разрядных регистрах.Расширение SSE-3, введенное в состав Pentium 4 Prescott, включает 5 новых операций с комплексными числами, 5 потоковых операций над числами с плавающей запятой, 2 команды для синхронизации потоков и одну специальную инструкцию для применения при кодировании видео.
Какими преимуществами обладают блейд-серверы?
Организация блейд-серверов основывается на концепции адаптивной инфраструктуры, которая предусматривает гибкость, экономичность и оперативность подстройки под быстро меняющиеся требования пользователей.
По определению аналитической компании IDC Blade-сервер – это модульная одноплатная компьютерная система, включающая процессор и память. Лезвия вставляются в специальное шасси (или полку) с объединительной панелью (back plane), обеспечивающей им подключение к сети и подачу электропитания. Это шасси с лезвиями по мнению IDC, является Blade-системой. Оно выполнено в конструктиве для установки в стандартную 19-дюймовую стойку и в зависимости от модели и производителя, занимает в ней 3U, 6U или 10 U (один U – unit, монтажная единица, равная 1,75 дюйма, 1 дюйм равен 2,54 см). За счет общего использования таких компонентов, как источники питания, сетевые карты, жесткие диски и блоки охлаждения, Blade-серверы обеспечивают более высокую плотность размещения вычислительной мощности в стойке по сравнению с обычными тонкими серверами высотой 1U и 2U. Блейды большинства изготовителей монтируются в шасси вертикально.
К преимуществам использования Blade-серверов можно отнести следующие:
уменьшение занимаемого объема;
уменьшение энергопотребления и выделяемого тепла;
уменьшение стоимости и повышение надежности системы питания и охлаждения;
повышение удобства управления системой;
высокая масштабируемость;
высокая гибкость;
сокращение количества коммутационных проводов.
Какими характеристиками должен обладать пк?
Персональные компьютеры (ПК) – это однопользовательские микро-ЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.
Для удовлетворения этим требованиям персональный компьютер должен иметь следующие характеристики:
1) невысокую стоимость, находящуюся в пределах доступности для индивидуального покупателя; 2)простоту использования; 3)возможность индивидуального взаимодействия пользователя с компьютером без посредников и ограничений; 4) высокие возможности по переработке, хранению и выдаче информации; 5)гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту; 6)высокую надежность, простоту ремонта и эксплуатации; 7)«дружественность» операционной системы; 8)наличие программного обеспечения, охватывающего практически все сферы человеческой деятельности.