Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Денисенко 4 сем (билеты).docx
Скачиваний:
90
Добавлен:
08.06.2019
Размер:
3.79 Mб
Скачать

I. Мембраны

  1. Структура и функции мембран. Виды трансмембранного переноса. Механизмы работы Na+ - К+ - АТФ – азы.

Мембрана – сверхтонкая структура, образующая поверхности органоидов и клетки в целом.

Мембраны состоят из белков и липидов различных групп:

  • Фасфолипидов

  • Галактолипидов

  • Сульфолипидов

Так же в их состав входят нуклеиновые кислоты, полисахариды и др.

Функции мембраны:

  • Отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков)

  • Барьерная функция клеточной мембраны —стража границ клетки, не пропуская вредные или попросту неподходящие молекулы

  • Транспортная функция клеточной мембраны –обмен полезными веществами с другими клетками и окружающей средой

  • Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.

  • Механическая функция – отвечает за ограничение одной клетки от другой и за правильно соединение клеток друг с другом (формирование их в однородную ткань).

  • Защитная функция (В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи)

  • Энергетическая функция – фотосинтез и клеточное дыхание за счет участия белка, содержащегося в клеточной мембране. через белковые каналы происходит важный клеточный энергообмен

  • Преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ

  • Рецепторная функция - клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.

  • Ферментативная функция –осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

  • Фагоцитоз – встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.

  • Пиноцитоз –процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.

  • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

Виды транспортных структур мембраны: (мембранные белки и структуры)

1. Ионные каналы - это специальные молекулярные трубочки с порами (дырочками) в мембране, образованные канальными белками, позволяющие ионам проходить через мембрану в обоих направлениях: внутрь и наружу. Ионные каналы могут открываться при определённых условиях, в этом случае они являются управляемыми этими условиями.

2. Транслоказы, - облегчающие переход вещества через мембрану за счёт своего временного связывания с диффундирующим веществом. Не требуют энергии, работают в обоих направлениях в зависимости от концентрации переносимого вещества.

3. Транспортёры - насильно протаскивающие определённые вещества сквозь клеточную мембрану в определённом направлении с затратами энергии. Ионные насосы - это транспортёры ионов. По способу использования энергии для своей работы транспортёры можно разделить на "симпортные" и "антипортные". Симпортные транспортёры используют совместный транспорт в одном направлении двух веществ: одно из них должно иметь большую потенциальную энергию для движения через мембрану.

Механизмы транспорта веществ через мембрану

1. Простая диффузия жирорастворимых (гидрофобных) веществ через жировой слой мембраны. Это пассивный процесс под действием градиента (перепада) концентрации вещества по разные стороны мембраны.

2. Неуправляемая диффузия (неуправляемый пассивный перенос) водорастворимых веществ через постоянно открытые ионные каналы мембраны.

3. Управляемая диффузия (управляемый пассивный перенос) водорастворимых веществ через управляемые ионные каналы мембраны.

4. Активный транспорт водорастворимых веществ с помощью специальных белковых транспортных структур (транспортёров) за счёт использования энергии расщепления АТФ.

5. Эндоцитоз крупных частиц за счёт образования мембранных пузырьков.

Одна из самых главных транспортных структур мембраны — это фермент АТФаза. АТФазы разных видов транспортируют через мембрану ионы. Они переносят их как внутрь клетки, так и наружу.

Название АТФаза означает, что это фермент, нацеленный на расщепление АТФ, его полное название - аденозинтрифосфатаза.

Эти ферменты расщепляют АТФ и высвобождают химическую энергию, заключённую в молекулах АТФ. Эта освобождённая энергия тратится тут же на какую-то полезную работу. Различные АТФазы, встроенные в мембрану, выполняет функцию переносчиков для различных веществ и являются, таким образом, молекулярными транспортёрами, «насильно» переносящими вещества сквозь мембрану.

Самой главной мембранной АТФазой по праву можно считать Na,K-АТФазу (натрий-калиевую аденозинтрифосфатазу).

По своей структуре она является представителем гетеродимерных АТФаз Р-типа.

Na,K-АТФаза образует в мембране «ионный натрий-калиевый насос», который разносит по разные стороны мембраны ионы Na+ и K+. Важно понять, что этот насос работает как обменник. На внутренней стороне мембраны активный центр фермента (АТФазы) захватывает 3 иона натрия и выбрасывает их уже на внешней стороне. А выбросив ионы натрия наружу, АТФаза на их место захватывает снаружи 2 иона калия. Затем фермент выворачивается внутрь клетки и перемещает ионы калия на внутреннюю сторону мембраны. Там он отпускает их, а вместо них опять захватывает 3 иона натрия.

При этом следует помнить, что, как истинный фермент, Na,K-АТФаза параллельно расщепляет АТФ, получая от этого энергию на свою транспортную деятельность.

Далее цикл повторяется.

  1. Функции и свойства белковых и липидных компонентов мембран. Белки-рецепторы. Трансмембранная передача сигналов в клетку.

Важное свойство мембран - способность воспринимать и передавать внутрь клетки сигналы из внешней среды. "Узнавание" сигнальных молекул осуществляется с помощью белков-рецепторов, встроенных в клеточную мембрану клеток-мишеней или находящихся в клетке. Клетку-мишень определяют по способности избирательно связывать данную сигнальную молекулу с помощью рецептора.

Если сигнал воспринимается мембранными рецепторами, то схему передачи информации можно представить так:

  • взаимодействие рецептора с сигнальной молекулой (первичным посредником);

  • активация мембранного фермента, ответственного за образование вторичного посредника;

  • образование вторичного посредника цАМФ, цГМФ, ИФ3, ДАГ или Са2+;

  • активация посредниками специфических белков, в основном протеинкиназ, которые, в свою очередь, фосфорилируя ферменты, оказывают влияние на активность внутриклеточных процессов.

Несмотря на огромное разнообразие сигнальных молекул, рецепторов и процессов, которые они регулируют, существует всего несколько механизмов трансмембранной передачи информации: с использованием аденилатциклазной системы, инозитолфосфатной системы, каталитических рецепторов, цитоплазматических или ядерных рецепторов.

Соседние файлы в предмете Биохимия