- •4)Каштановые- с/х исп-е:
- •12 Влияние удобений на кач-во продукции
- •15.Зеленое удобрение.
- •2. Влияние агротехнических приемов и удобрений на интенсивность
- •2. Агрохимические сред-ва и биологическая активность почв
- •3. Особенности трансформации и состава гумуса под дейтсвием различных систем удоберний
- •5. Нетрадиционные виды удобрений, их агроэкологическая оценка (осв, фосфогипс, сапропель итп (цеолит).
- •1)Обработан известью и тиозоном- осень под зяблевую вспашку. За 3 недели до посева, стабилизация микробных сообщ-в.
- •2)Безв nh3 и амм воды-только весной под зяблевую перепашку (ибо потери). Под пропашные
- •Фосфогипс серосодержащие удобрения
- •6. Методы оптимизации применения удобрений
- •Пример расчета потребностей растений в питательных веществах на планируемую прибавку урожая (при урожае без удобрений 20 ц/га)
- •II. Расчет доз питательных веществ на планируемую прибав-ку урожая:
- •9.9. Цена балла пашни, кг продукции на один балл
- •Эффективные приемы и техника внесения удобрений, их теоретическое обоснование
- •Основное удобрение
- •Припосевное удобрение
- •Подкормка
- •10. Химическая мелиорация, ее влияние на агрохимич. Св-ва и биологическую активность 1)Известкование кисилых 2)Гипсование солонцовых почв3)р-мука.
- •3) Состояние гидролитической кислотности почвы, суммы поглощенных оснований, гранулометрического состава почвы; со-держание подвижного алюминия.
- •Эффективность известкования
- •Гипсование почв
- •Эффективность гипсования
- •9.22 Основные показатели качества зерна пшеницы (по госТу*)
- •9.23. Диагностика доз азота в подкормке озимой пшеницы рано весной по содержанию в почве n – nо3
- •9.24. Определение необходимости проведения некорневой подкормки озимой пшеницы по тканевой диагностике
- •9.34. Средний химический состав семян зернобобовых культур, % сухой массы
- •1)Скашивать зел массу нат корм,
- •2)Стравливание (почва промерзла, -4, молодняк съест).
- •30% Зависит урожай от весенней подкормки.
- •2Ая подкормка весной направлена на формирование продуктивного стебля (выход в трубку).
- •Билет 13
- •Рапс озимый и яровой, агроэкологические условия, качество продукции.
- •Эффективность калийных удобрений
- •15. Зеленое удобрение (сидераты), их эффективность и агроэкологическое значение
- •16. Пути снижения взаимного негативного действия минеральных удобрений в агроценозе и на природную среду.
- •Молибден
- •Марганцевые удобрения
- •Кобальтовые удобрения
- •Оптимизация содержания микроэлементов в почве и применение микроудобрений
- •5.22. Дозы и способы применения различных микроудобрений для основных сельскохозяйственных культур
- •21. Связь между углеродным (воздушным) и минеральным (корневым) питанием растений
- •3 Направления учения о роли почвы в питании с/х растений, сформировавшиеся в 15-17 вв.:
- •Воздушное питание растений (фотосинтез)
- •Минеральное (корневое) питание растений
- •1) Азотные 2) Фосфорные 3) Калийные 4) Комплексные 5) Микроудобрения
- •4. Комплексные удобрения, их классификация, состав, свойства
- •1.А Аммиачная селитра (нитрат аммония, азотнокислый аммоний) - nн4nо3 содержит 34,6% азота.
- •Взаимодействие аммиачной селитры с почвой
- •1.Б Известково-аммиачная селитра (nн4nо3×СаСо3) содержит 18–20% азота, обладает лучшими физическими свойствами, чем аммиачная селитра.
- •1 ВХлорид аммония ( nh4Cl) содержит 24-25% азота в nh4 форме, хорошо растворим в воде.
- •4 А Сульфат аммония (nh4)2so4 содержит 21% азота в nh4 форме, хорошо растворим в воде.
- •Взаимодействие сульфата аммония с почвой
- •3 Амидные удобрения
- •3 Цианамид кальция (CaCn2) содержит 20–21% азота и 20-28% СаО.
- •5.Жидкие Производство их значительно дешевле, чем твердых солей
- •Пути повышения эффективности азотных удобрений
- •Географическая закономерность действия азотных удобрений с учетом почвенно-климатических условий
- •Влияние комплекса агромелиоративных мероприятий на эффективность азотных удобрений
- •Подбор форм азотных удобрений, сроки и способы их внесения
- •4.10. Содержание фосфора в слое 0–20 см
- •1)Фосфорные удобрения, содержащие водорастворимые фосфорные соединения
- •3. Нерастворимые фосфаты
- •Применение фосфорных удобрений
- •2) Эффективность фосфатов, растворимых в слабых кислотах, зависит от почв – на кислых почвах действие их может быть сильнее (томасшлак, термофосфаты), чем суперфосфатов;
- •Оптимизация доз фосфорных удобрений
- •5.10. Дифференциация доз фосфорных удобрений и вынос фосфора растениями в зависимости от обеспеченности почв подвижным фосфором
3 Амидные удобрения
Мочевина содержит 46% N, растворимо в воде на 100%.
В почве: CO(NH2)2 ----- NH3 +CO2 + H2O УРЕАЗА Наибольшие потери когда:
Низкое содержание глинистой фракции и органического вещества, способных адсорбировать NH4+
Щелочная реакция поверхностного горизонта
В почве под влиянием уробактерий, выделяющих уреазу, мочевина аммонифицируется, образуя углекислый аммоний: CO(NH2)2 + 2H2О = (NH4)2CO3. При благоприятных условиях на богатых гумусом почвах мочевина превращается в углекислый аммоний за 2–3 дня Углекислый аммоний – соединение непрочное. На воздухе он разлагается с образованием бикарбоната аммония и газообразного аммиака: (NH4)2CO3 NH4HCO3 + NH3.
Поэтому при поверхностном внесении мочевины без заделки в почву и при отсутствии осадков могут быть частичные потери азота в виде аммиака, особенно на почвах с нейтральной и щелочной реакцией. На стадии аммонификации мочевина временно подщелачи-вает почву: (NH4)2CO3 + Н2О = NH4HCO3 + NH4OH.
На стадии нитрификации реакция почвы сдвигается в сторону кислого интервала
Мочевина – ценное азотное удобрение. Применяется под раз-личные культуры. В зоне до-статочного увлажнения на легких дерново-подзолистых почвах и при орошении на сероземах мочевина более эффективна, чем аммиачная селитра, так как амидный азот мочевины быстро превращается в аммиачный, а последний поглощается почвой и меньше вымывается
Высокоэффективна мочевина при подкормке озимых с последующей немедленной заделкой ее боронованием, а также для подкормки пропашных полевых и овощных культур культиваторами-растениепитателями.
Применяется мочевина и в виде раствора для некорневой подкормки растений, особенно пшеницы для повышения ее бел-ковости. В этом случае лучше применять кристаллическую мочевину, так как она содержит меньше биурета (0,2–0,3%).
3 Цианамид кальция (CaCn2) содержит 20–21% азота и 20-28% СаО.
Пылящий черный порошок, растворим в воде физиологически щелочное удобрение.
Систематическое применение на кислых почвах улучшает ее физические свойства благодаря нейтрализации кислотности и обогащению кальцием.
Вносят за 7– 10 дней до посева.
(ППК)H2 + СаСN2= (ППК)Са + H2CN2
Превращения цианамида в почве H2CN2 --- CO(NH2)2 Однако он быстро переходит в мочевину, поэтому и рекоменду-ется заблаговременное его внесение. В подкормку не рекомендуется, так как в почве цианамид кальция подвергается гидролизу и взаимодействует с поглощающим комплексом. При этом образуется циана-мид (H2CN2), который ядовит и анестезирующе действует на растения.
5.Жидкие Производство их значительно дешевле, чем твердых солей
Безводный аммиак (NH3) – самое концентрированное безбаластное удобрение, содержит 82,3% N. Получается сжижением газообразного аммиака.
Аммиачная вода – раствор аммиака в воде. Первый сорт этого удобрения содержит 20,5% N (25%-й аммиак), второй –16,4% N (20%-й аммиак). Азот в аммиачной воде содержится в форме аммиака (NH3) и аммония (NH4OH). Причем свободного аммиака содержится значительно больше, чем аммония, что обусловливает возможные потери азота за счет улетучивания. Внесенный в почву аммиак быстро адсорбируется ею, а также поглощается почвенной влагой, превращаясь в гидроокись аммония. Аммиак в почве подвергается нитрификации. Из почв легкого механического состава и сухих аммиак улетучивается быстрее.
Аммиакаты - содержат от 30 до 50% азота. Получают их, растворяя в водном аммиаке аммиачную и кальциевую селитру, мочевину. В 10–15%-ю аммиачную воду вводят горячий раствор аммиачной селитры (или смесь кальциевой и аммиачной селитры) и доводят удобрение до требуемого состава. Перевозят и хранят в специальных, герметически закрываемых цистернах, рассчитанных на небольшое давление.
КАС - смесь водных растворов карбамида (мочевины) и аммиачной селитры (КАС).
Готовят КАС из неупаренных плавов удобрений с содержанием азота 28–32%. КАС имеют нейтральную или слабощелочную реакцию, представляют собой прозрачные или желтоватые жидкости
Все жидкие азотные удобрения нельзя вносить поверхностно и мелко заделывать.
Их вносятся специальными машинами на глубину– 14–18 см.
Если почва крупнокомковатая, то глубина заделки этих удобрений увеличивается в 1,2–1,5 раза.
Вносят их в основном приеме под зяблевую вспашку, весной – под предпосевную культивацию и в подкормку пропашных культур в тех же дозах (по азоту), как и твердые азотные удобрения.
Вносят их как в основном приеме, так и подкормку пропашных и зерновых культур теми же машинами, что и для аммиачной воды и жидких комплексных удобрений
6. медленнодействующих удобрений:Основные преимущества
1) снижение потерь питательных веществ из почвы;
2) повышается коэффициент использования удобрений;
3) уменьшается загрязнение окружающей среды;
4) улучшается качество продукции;
5) снижаются трудовые затраты при замене дробного внесения на один прием;
6) улучшается качество удобрений при хранении и транспортировке.
Самые крупные производители медленнодействующих удобре-ний – США и Япония.
1) получение соединений с ограниченной растворимостью в воде (уреаформы); 2) покрытие частиц удобрений раз-личными веществами (воск, парафин, масла, смолы, полимеры и др.); 3) производство удобрений, содержащих ингибиторы нитрификации
Мочевино-формальдегидные удобрения (МФУ) (карбамид-форм, уреаформы) - продукты конденсации мочевины CO(NH2)2 и формальдегида (СН2О).
Преимущество МФУ
1. Внесение всей дозы азота на планируемый урожай в один срок позволяет значительно сократить затраты.
2. Из-за пониженной растворимости этих удобрений в воде предотвращаются потери азота через улетучивание, вымывание, а также переход азота в труднорастворимые органические соединения
В МФУ содержится 38–40% азота, из которых 8–10% находятся в водорастворимой, а остальные – в водонерастворимой, но доступ-ной для растений форме. МФУ имеют различную степень доступ-ности азота для растений.
Кислая реакция почвы существенно снижает скорость пре-вращения МФУ, поэтому известкование таких почв увеличивает скорость процессов их нитрификации. Как и мочевина, высокие дозы МФУ подщелачивают почву, а по мере их минерализации почва постепенно подкисляется.
В государствах Средней Азии, в Закавказье в условиях орошаемого земледелия азотные удобрения быстро нитрифицируются, а нитрат-ный азот с нисходящим током воды вымывается из корнеобитаемого слоя почвы или с восходящим током (после полива) выносится на поверхность. В том и другом случаях снижается использование азота растениями, а следовательно, и эффективность азотных удобрений. Напротив, в слаборастворимых МФУ азот медленно переходит в растворимую форму и постепенно используется растениями в течение продолжительного времени.
Из ингибиторов нитрификации за последние годы чаще всего применяются циангуанидин (дициандиамид), американский препарат N-serve (2хлор-6трихлорметил) пиридин и японский препарат AM (2-амино-4хлор-6метилпиримидин).
Медленнодействующие удобрения существенно снижают загрязнение грунтовых и других водных источников нитратами и другими формами азота, особенно на легких почвах.
На дерново-подзолистых почвах разной степени окультуренности в звеньях полевых севооборотов не выявлено преимущества МФУ перед растворимыми азотными удобрениями ни по величине урожая, ни по качеству продукции, а на тяжелой дерново-подзолистой почве действие МФУ на урожай зеленой массы кукурузы было слабее.
Для повышения эффективности водорастворимых форм азотных удобрений, коэффициента использования азота широко применяют капсулированные азотные удобрения и ингибиторы нитрификации.
При капсулировании водорастворимых азотных удобрений гранулы покрываются пленками, через которые трудно и медленно проникают водные растворы. используются парафин, эмульсия полиэтилена, соединения серы, акриловая смола, полиакриловая кислота и другие вещества.
Ингибиторы, подавляя нитрификацию азота удобрений, снижа-ют его потери в газообразной форме, с поверхностным стоком воды и в результате вымывания нитратов. Это приводит к существенному повышению урожаев, особенно хлопчатника, риса, овощных культур, кукурузы на зерно и силос, других пропашных и кормовых культур, выращиваемых в условиях орошения или в районах повышенного увлажнения.
