Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lektsii_IP_3_versia.doc
Скачиваний:
55
Добавлен:
05.05.2019
Размер:
15.22 Mб
Скачать

ГОУ ВПО «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ»

Кафедра электрических станций

Лопухова Т.В., Усачев А.Е., Чернов К.П.

Лекции по дисциплине

ИЗОЛЯЦИЯ И ПРЕНАПРЯЖЕНИЯ

для дистанционного обучения

Казань 2012

Прямоугольник 1529 МОДУЛЬ 1

1. ИЗОЛЯЦИЯ И ПЕРЕНАПРЯЖЕНИЯ ИЛИ ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ

1.1.Применение высоких напряжений для передачи электрической энергии

Применение высоких напряжений для передачи электрической энергии на большие расстояния играет важную роль в развитии мировой электроэнергетики и нашей страны. Наиболее высокое напряжение, используемое в мире в настоящее время 750 кВ (Россия, Украина) и 765 кВ (США, Канада, Бразилия). В Европейской объединенной энергосистеме (UCPTE) наивысшее напряжение 400 кВ. В мире была сооружена лишь одна линия ультравысокого напряжения (УВН) 1150 кВ Экибастуз – Кокчетав – Кустанай – Челябинск (Казахстан – Россия). Все оборудование этой уникальной электропередачи было разработано в нашей стране и выпущено отечественной промышленностью. В настоящее время 500 км этой линии эксплуатируется под напряжением 500 кВ.

Рост напряжений, который происходил в течение всего периода развития электроэнергетики, определяется экономическими факторами. Стоимость линии электропередачи (ЛЭП) примерно пропорциональна номинальному напряжению, в то время как её пропускная способность пропорциональна квадрату этого напряжения. Себестоимость передачи электроэнергии снижается при повышении номинального напряжения, уменьшаются и удельные капиталовложения.

Экономические факторы также способствовали сооружению мощных электростанций, поскольку удельные капиталовложения и металлоёмкость для крупных электростанций значительно ниже, чем для мелких.

Необходимость передачи электроэнергии на большие расстояния связана с удалением электростанций от центров потребления, что вызвано повышением экологических требований к электростанциям, прежде всего необходимостью сокращения занимаемых под них земельных площадей и усложнением их размещения вблизи крупных промышленных центров. Это, в свою очередь, влечет за собой увеличение длины линий электропередачи. Для того чтобы снизить потери электроэнергии при передаче по длинным линиям определенной мощности необходимо повысить напряжение и уменьшить ток. В России передача электроэнергии на значительные расстояния осуществляется по линиям с номинальными напряжениями 110, 220, 330, 500, и 750 кВ. В таблице 1.1. представлены пропускная способность линий различных номинальных напряжений и их длина в зависимости от номинального напряжения.

Надежная работа электрических систем высокого напряжения в основном определяется изоляцией и теми напряжениями, которые на эту изоляцию воздействуют. Повышения напряжения, которые могут быть опасными для изоляции, называются перенапряжениями. Использование высоких напряжений в электрических системах связано с проблемой обеспечения безаварийной работы изоляции всех элементов электрической системы. Рассматриваемая проблема получила название “Техника высоких напряжений в электроэнергетике”

Таблица 1.1.

Пропускная способность электропередачи 110-1150 кВ [ ЭТС, Т.3, с. 239]

Напряжение

линии, кВ

Натуральная мощность, МВт,

при волновом сопротивлении, Ом

Передаваемая

мощность на

одну цепь, МВт

Длина

передачи,

км

400

300-314

250-275

110

30

__

__

25-50

50-150

220

120

160

__

100-200

150-250

330

270

350

__

300-400

200-300

500

600

__

900

700-900

800-1200

750

__

__

2100

1800-2200

1200-2000

1150

__

__

5200

4000-6000

2500-3000

Техника высоких напряжений (ТВН) в настоящее время представляет собой науку о характеристиках вещества и процессах в нем при экстремальных электромагнитных воздействиях - высоких напряжениях и сильных токах, а также о технологическом использовании этих процессов. Один из основных разделов ТВН посвящен свойствам и характеристикам изоляционных конструкций электрооборудования высокого напряжения и условиям их надежной эксплуатации при воздействии рабочего напряжения, грозовых и внутренних перенапряжений. Учебная дисциплина, соответствующая этому разделу называется «Изоляция и перенапряжения». Структура этой дисциплины достаточно разнородна и представляет собой два больших раздела «Изоляция электрических установок высокого напряжения» и «Перенапряжения в электрических системах». Эти разделы связаны между собой задачей координации изоляции, которая заключается в приведении в соответствие уровней электрической прочности изоляции и уровней воздействующих на электроустановки перенапряжений. На схеме (рис.1) представлена структура учебной дисциплины, которая поможет студентам составить общее представление о содержании этой дисциплины.

1.2. Изоляция электрических установок

Изоляция электрических установок разделяется на внешнюю и внутреннюю. К внешней изоляции относятся воздушные промежутки (например, между проводами разных фаз линии электропередачи), внешние поверхности твердой изоляции (изоляторов), промежутки между контактами разъединителя и т.п. К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция, как правило, представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).

Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя. Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки.

Рис. 1. Структура учебной дисциплины «Изоляция и перенапряжения»

Особенностью внутренней изоляции электрооборудования является старение, т.е. ухудшение электрических характеристик в процессе эксплуатации. Вследствие диэлектрических потерь изоляция нагревается. Может произойти чрезмерный нагрев изоляции, который приведет к ее тепловому пробою. Под действием частичных разрядов, возникающих в газовых включениях, изоляция разрушается и загрязняется продуктами разложения. Пробой твердой и комбинированной изоляции - явление необратимое, приводящее к выходу из строя электрооборудования. Жидкая и внутренняя газовая изоляция самовосстанавливается, но ее характеристики ухудшаются. Необходимо постоянно контролировать состояние внутренней изоляции в процессе ее эксплуатации, чтобы выявить развивающийся в ней дефекты и предотвратить аварийный отказ электрооборудования.

1.3. Перенапряжения, воздействующие на электроустановки

Перенапряжения, воздействующие на изоляцию электроустановок, можно разделить на грозовые и внутренние.

Грозовые перенапряжения возникают при поражении электрической установки разрядом молнии. С грозовым разрядом связано возникновение волн перенапряжений, достигающих нескольких тысяч киловольт. При отсутствии специальной защиты такие перенапряжения достаточны для перекрытия и повреждения изоляции установок любого номинального напряжения. Эти перенапряжения распространяются в электрической системе в форме волн и проникают во все элементы системы, в частности в аппаратуру и обмотки трансформаторов. Возникающие при этом переходные процессы приводят к резкому повышению напряжений, воздействующих на внутреннюю изоляцию трансформаторов и аппаратов. Поэтому защита от грозовых перенапряжений является обязательным элементом надежной работы электрической системы.

Внутренние перенапряжения возникают при переключениях в сети, при дуговых замыканиях на землю в сетях с изолированной и компенсированной нейтралью, а также при резонансных явлениях, возникающих на длинных линиях и в несимметричных режимах. Такие перенапряжения существенно зависят от характеристик оборудования, в первую очередь выключателей, и схем сети. Внутренние перенапряжения, так же как и грозовые, носят статистический характер. Они могут в 3-3,5 раза превышать фазное напряжение установки. Как правило, изоляция установок до 220 кВ включительно такие напряжения выдерживает. При более высоких номинальных напряжениях амплитудные значения внутренних перенапряжений могут стать выше значений пробивных напряжений изоляции. Приходится применять различные способы ограничения внутренних перенапряжений.

Взаимное согласование значений воздействующих напряжений, характеристик защитной аппаратуры и электрических характеристик изоляции, обеспечивающее надежную работу и экономичность электрической установки называется координацией изоляции и представляет собой главную технико-экономическую задачу проектирования электроустановки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]