Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы и средства повышения безопасности и экол...doc
Скачиваний:
5
Добавлен:
04.05.2019
Размер:
251.39 Кб
Скачать

5.6. Электробезопасность

193. Назначение лица ответственного за электрохозяйство [21]

Согласно Правил эксплуатации электроустановок потребителей (ПЭЭП) для безопасной эксплуатации электроустановок (ЭУ) должно быть назначено, лицо ответственное за электрохозяйство [21]:

- на предприятии приказом руководителя - это лицо из ИТР (если есть, то главный энергетик); назначается одновременно и лицо заменяющее ответственного за электрохозяйство ( в период отпуска, болезни, командировок), причем приказ издается после проверки знаний и присвоения группы по электробезопасности: V - в электроустановках выше 1000 В; IV - до 1000 В;

- на малых индивидуальных семейных предприятиях, кооперативах и т.д., использующих осветительные устройства, инструменты и механизмы напряжением до 400 В - по согласованию с местным органом энергонадзора, руководитель или владелец этого предприятия без проверки знаний и присвоения группы по электробезопасности;

- на индивидуальных , семейных предприятиях, крестьянских (фермерских) хозяйствах, имеющих ЭУ до 1000 В - это владелец или по его письменному согласию член семьи после их обучения и получения в комиссии "Энергонадзора" III группы по электробезопасности, а имеющие только ЭУ до 400 В - проходят инструктаж в местном органе Энергонадзора и получают на руки инструкцию (памятку по безопасности обслуживанию ЭУ) с отметкой в журнале и в заявлении владельца. Руководитель предприятия, по представлению ответственного за электрохозяйство, может назначить ответственных за электрохозяйство в подразделениях.

194. Требования к персоналу для эксплуатации электроустановок [21]

Руководители, имеющие в подчинении электротехнологический персонал, должны иметь квалификационную группу по электробезопасности не ниже, чем у подчиненного персонала. Перечень должностей ИТР и электротехнического персонала, которым необходимо иметь соответствующую квалификационную группу по электробезопасности, утверждает руководитель предприятия.

Неэлектротехническому персоналу, выполняющему работы, при которых может возникнуть опасность поражения электротоком, присваивается I группа по электробезопасности, перечень этих профессий и рабочих мест определяет руководитель предприятия. I группа присваивается после инструктажа и проверки знаний лицом не ниже III группы по электробезопасности, проверка оформляется в специальном журнале.

К работе на ЭУ не допускаются люди моложе 18 лет и не имеющие медицинские противопоказания. Практиканты (из институтов, техникумов, училищ) допускаются к пребыванию в действующих ЭУ под постоянным надзором лица с группой по электробезопасности не ниже III - при напряжении до 1000 В и IV - выше 1000 В.

Допуск к стажировке и самостоятельной работе электротехнического персонала оформляется для ИТР распоряжением по предприятию, для рабочих распоряжением по цеху после проверки знаний.

Стажировка на рабочем месте проводится не менее 2 недель под руководством опытного работника.

Проверка знаний правил и инструкций должна проводиться:

  • первичная - перед допуском к самостоятельной работе; периодическая - для электротехнического персонала, непосредственно обслуживающего ЭУ, - 1 раз в год, а для руководителей и специалистов и инженеров по ОТ 1 раз в 3 года;

  • внеочередная - при нарушении правил и инструкций. При получении неудовлетворительной оценки назначается повторная проверка не ранее 2 недель и не позднее 1 месяца со дня последней проверки, при получении неудовлетворительной оценки при третьей проверке человек переводится на другую работу или с ним расторгается договор из-за недостаточной квалификации.

Проверка знаний проводится комиссией в составе не менее трех человек - ответственного за электрохозяйство предприятия, его заместителя и инженера по ОТ с участием руководителя предприятия или его заместителя, инспектора Энергонадзора и представителя отдела ОТ или профкома.

Допускается назначение комиссии органом энергонадзора.

Проверка знаний проводится индивидуально с записью результатов в журнал с подписью всех членов комиссии, после чего выдается удостоверение.

197. Возможные схемы случайного включения человека в цепь тока

[6, с.195; 7, c.275; 8, с.89]

Рассмотрим возможные схемы случайного включения человека в цепь тока.

Двухфазное (двухполюсное) прикосновение - человек касается двух полюсов сети постоянного тока, однофазной сети переменного тока или к двум фазам трехфазной сети. При

этом ток, проходящий через человека, определяется сопротивлением тела человека и рабочим напряжением сети: _

Uраб Uл 3Uф 1,73 Uф

Ir = -------- ; Ir = ----- = ------ = -----------,

Rr Rr Rr Rr

где Uраб ,Uл ,Uф - напряжение соответственно рабочее, линейное, фазное;

Rr - фактическое сопротивление человека.

В данном случае изоляция человека от земли не защищает его от поражения током.

Однофазное прикосновение возможно при прикосновении стоящего на земле человека к одному из полюсов или одной из фаз - цепь тока замыкается через землю, сопротивление изоляции и емкости фаз в сети с изолированной нейтралью или через заземление нейтрали. Однофазные сети могут быть изолированы от земли и иметь заземленную нейтральную точку или заземленный полюс. Сети, изолированные от земли, имеют активную проводимость провода относительно земли (через изоляцию), кроме того между проводами и землей имеется емкость. При одинаковых активных и емкостных проводимостях обоих проводов относительно земли, ток проходящий через человека составляет:

U

Ir = ---------,

Rr + Z

где Z - полное сопротивление изоляции относительно земли.

В трехфазной сети: U

Ir = ---------------------- .

Rr(Z1 +Z 2)+Z12

U

и при Z1 =Z2 =Z3 =Zф Ir = ----------

Rr + Zф

Если изоляция другой фазы будет нарушена (замыкание на землю), то ток проходящий через человека при Zф = 0 будет: U

Ir = ------- .

Rr

Таким образом при однополюсном прикосновении человек находится под защитой изоляции сети, и если находится в обуви (на коврике), то и под дополнительной защитой обуви. Необходимо иметь в виду, что при разветвленных сетях с большим числом токоприемников полное сопротивление изоляции фазы относительно земли будет сравнительно небольшим и при однополюсном прикосновении ток через тело человека окажется наиболее опасным.

198. Напряжение прикосновения. Напряжение шага [6, с.198; 7, с.271; 8, c.94; 22, с.263]

Прикосновение к заземленным нетоковедущим частям, оказавшимся под напряжением.

Указанные части электроустановок (корпуса, оболочки, кабеля) могут оказаться под напряжением лишь случайно в результате повреждения изоляции. При случайном касании этих частей человек будет находиться под воздействием напряжения прикосновения.

Напряжение прикосновения - это напряжение между двумя точками цепи тока, которых одновременно касается человек (ГОСТ 12.1.009-76). При прикосновении человека к заземленному корпусу, имеющему контакт с одной из фаз, часть тока замыкания на землю будет проходить через человека, а если корпус не заземлен, то через человека проходит весь ток замыкания на землю (однополюсное прикосновение).

Величина напряжения прикосновения для человека, стоящего на грунте и коснувшегося оказавшегося под напряжением заземленного корпуса, может быть определена как разность потенциалов руки (корпуса) и ноги (грунта) с учетом коэффициентов:

1- учитывающего форму заземлителя и расстояния от него до точки на которой стоит человек;

2- учитывающего дополнительное сопротивление цепи человека (одежда, обувь)

Uпр = U312,

а ток, проходящий через человека R3

Ih = I3 ------- 12.

Rh

Наиболее опасным для человека является прикосновение к корпусу, находящемуся под напряжением и расположенному вне поля растекания.

Включение на напряжение шага. Напряжением шага (шаговым напряжением) называется напряжение между двумя точками цепи тока, находящихся одна от другой на расстоянии шага, на которых одновременно стоит человек (ГОСТ 12.1.009-76).

R3

Uш = U312, Ih = I3 ------ 12,

Rr

где  1 - коэффициент, учитывающий форму заземлителя;

2- коэффициент, учитывающий дополнительное сопротивление в цепи человека (обувь, одежда).

Наибольшее напряжение шага будет вблизи заземлителя и особенно, когда человек одной ногой стоит над заземлителем, а другой - на расстоянии шага от него. Если человек находится вне поля растекания или на одной эквипотенциальной линии, то напряжение шага равно нулю.

Необходимо иметь в виду, что максимальные значения 1 и 2 больше таковых соответственно 1 и 2, поэтому шаговое напряжение значительно меньше напряжения прикосновения. Кроме того путь тока "нога-нога" менее опасен пути "рука-рука", однако имеется много случаев поражения людей при воздействии шагового напряжения, что объясняется тем, что при воздействии шагового напряжения в ногах возникают судороги, и человек падает. После падения человека цепь тока замыкается через другие участки тела, кроме тогочеловек может замкнуть точки с большими потенциалами.

Пример.

По территории завода был проложен временный гибкий кабель. Кабель лежал на пути перемещения ручной тележки, поэтому в этом месте он был прикрыт железным листом, при перемещении груженой тележки кабель был поврежден и одна из его жил была в соприкосновении с листом. В результате вокруг листа возникло шаговое напряжение. Двое рабочих, толкавших тележку, получили электрический удар, от которого один упал, а второй с криком отскочил от тележки. Оба отделались испугом. Третий рабочий, шедший рядом и не касавшийся тележки получил удар от шагового напряжения. Вначале он стал медленно приседать, затем, скорчившись, упал и умер.

199. Защитные меры в электроустановках [6, с.202; 7, c.282; 8, с.114; 22, с.180; 26, c.158]

Согласно ГОСТ 12.1.019-79* электробезопасность электроустановок обеспечивается конструкцией электроустановок, техническими способами и средствами защиты, организационными и техническими мероприятиями.

Все меры обеспечения электробезопасности сводятся к трем путям:

1) недопущение прикосновения и приближения на опасное расстояние к токоведущим частям, находящимся под напряжением;

2) снижение напряжения прикосновения;

3) уменьшение продолжительности воздействия электрического тока на пострадавшего.

К техническим способам относятся следующие, предусмотренные ПУЭ;

1) применение надлежащей изоляции и контроль за ее состоянием;

2) обеспечение недоступности токоведущих частей;

3) автоматическое отключение злектроустановок в аварийных режимах - защитное отключение;

4) заземление или зануление корпусов электрооборудования;

5)выравнивание потенциалов;

6) применение разделительных трансформаторов;

7) защита от опасности при переходе напряжения с высокой стороны на низкую;

8) компенсация емкостной составляющей тока замыкания на землю;

9) применение малых напряжений.

200. Применение надлежащей изоляции. Термин "участок сети"

[7, с.300; 8, c.118; 22, с.180]

Для предупреждения электропоражений применяется рабочая изоляция токоведущих частей, кроме того применяется двойная изоляция - это изоляция металлических частей электрооборудования нормально не находящихся под напряжением.

Последний метод защиты имеет недостаток - при пробое на корпусе из-за повреждения рабочей изоляции возможна работа с таким оборудованием, а при повреждении второго слоя изоляции открывается доступ к металлическим частям (корпусу), находящимся под напряжением.

Таким образом надежность работы электроустановок в большой степени зависит от состояния изоляции токоведущих частей.

Повреждение изоляции является основной причиной многих несчастных случаев.

Надежность изоляции достигается:

1) правильным выбором ее материала и геометрии (толщина, форма);

2) правильными условиями эксплуатации;

3) надежной профилактикой в процессе работы.

Изоляция исключает возможность прохождения тока через тело человека при прикосновении к токоведущим частям или ограничивает этот ток до безопасных значений для человека (до 100 мкА).

В последнее время наблюдается широкое внедрение новых видов изоляционных материалов (пластмасс и пр.) заменяющих каучуковую, хлопчатобумажную и т.п. виды изоляции.

Для поддержания высокого уровня надежности изоляции необходимо проводить ее испытание повышенным напряжением и контроль изоляции.

Испытания проводятся при приеме-сдаче электроустановок и периодически во время их эксплуатации.

Объем испытаний изоляции регламентируется ПУЭ, ПТЭ и ПТБ. При испытании повышенным напряжением дефекты изоляции обнаруживаются в следствии пробоя и прожигания изоляции.

Под контролем изоляции понимается измерение ее активного сопротивления с целью обнаружения ее дефектов и предупреждения коротких замыканий на землю. Измерения проводятся при снятом рабочем напряжении на каждом участке сети, при этом измеряется величина сопротивления изоляции каждой фазы относительно земли и между каждой парой фаз.

Под участком сети понимается сеть между двумя последовательно установленными предохранителями, аппаратами защиты и т.п. или за последним предохранителем.

Сопротивление изоляции (устанавливается ПУЭ и ПТЭ) участка сети в сетях напряжением до 1000 В должно быть не менее 0,5 мОм на фазу, а сопротивление изоляции для различных электроаппаратов устанавливается различным от 1 до 25 мОм.

Величина сопротивления изоляции некоторых электроаппаратов (напр. силовых трансформаторов) вообще не нормируется. Однако путем сравнения величины сопротивления изоляции аппарата, измеренной при пуско-сдаточных испытаниях и в данный момент, можно судить о надежности изоляции. Изоляция считается недостаточной , если установлено снижение сопротивления изоляции по отношению к первоначальным значениям на 30 и более процентов.

202. Обеспечение недоступности токоведущих частей

[7, с.283; 8, c.132; 26, с.158]

Прикосновение к токоведущим частям всегда опасно, а при напряжении выше 1000 В опасно приближение к токоведущим частям.

Изоляция проводов достаточно защищает при напряжениях до 1000 В, при больших напряжениях опасно прикосновение и к изолированному проводу, т.к. повреждение изоляции бывает незаметно, если он подвешен на изоляторах.

Чтобы исключить прикосновение или приближение к токоведущим частям, обеспечивается их недоступность посредством ограждения, блокировок, расположения токоведущих частей на недоступном месте или на недоступной высоте.

Ограждения применяются сплошные или сетчатые. Первые применяются при напряжениях до 1000 В в виде кожухов и крышек, укрепленных на шарнирах, запирающихся на замок или запор, открывающийся специальным ключом. Сетчатые ограждения (с размером ячеек 25х25 мм) имеют двери, закрывающиеся на замок.

Блокировки применяются в электроустановках с ограждаемыми токоведущими частями, а также в различных электроаппаратах, пускателях и т.п., работающих в условиях с повышенными требованиями безопасности (шахты, суда).

Электрические блокировки осуществляют разрыв цепи управления (магнитного пускателя и т.п.) специальными контактами, установленными на дверях ограждений, крышках и дверцах кожухов, таким образом, чтобы при незначительном открывании дверей (крышек) контакты срабатывали.

Механическая блокировка применяется в электрических аппаратах, пускателях, рубильниках.

Расположение токоведущих частей на недоступной высоте или недоступном месте должно обеспечить безопасность работ без ограждений, при этом должна учитываться возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках.

203. Защитное отключение [6, с.213; 7, c.295; 8, с.161; 22, с.193; 26, c.166]

Защитное отключение - быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (за время 0,03-0,1 сек.) при возникновении в ней опасности поражения током.

Повреждение электроустановки приводит к изменениям некоторых величин, которые могут быть использованы как входные величины автоматического защитного устройства. Значение входной величины, при котором срабатывает защитное устройство, называется уставкой, которая чаще устанавливается в 15, 30, 100, 300 мА, напимер Астро-УЗО имеет уставки 10, 30, 100 мА и время срабатывания 20-30 мс.

В зависимости от того, что является входной величиной, выделяются следующие схемы защитного отключения:

на напряжении корпуса относительно земли;

на токе замыкания на землю;

на напряжении нулевой последовательности;

на напряжении фазы относительно земли, на постоянном и переменном токе ( комбинированные ).

Наиболее желательно применение защитного отключения в передвижных электроустановках и для ручного электроинструмента, т. к. условия их эксплуатации затрудняют обеспечение безопасности применения заземления или других защитных мер.

Защитное отключение может быть применено как основная мера защиты с дополнительным защитным заземлением или занулением, а также как дополнительная мера к ним, кроме того защитное отключение может быть единственной мерой защиты "вместо заземления",в этом случае обязателен самоконтроль защитного отключения.

204. Защитное заземление и выравнивание потенциалов, зануление

[6, с.202; 7, c.285;8, с.135; 22, с.187; 26, c.162]

В электроустановках переменного и постоянного тока защитное заземление и зануление обеспечивают защиту людей от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции.

Защитное заземление - это преднамеренное электрическое соединение с землей или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Защитному заземлению и занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты.

Так, корпуса электрических машин , трансформаторов, светильников и др. нетоковедущие части могут оказаться под напряжением при замыкании на корпус. Если корпус не заземлен, то прикосновение к нему также опасно, как и прикосновение к фазе.

При заземлении корпуса ток через тело человека при его прикосновении к корпусу будет тем меньше, чем меньше ток замыкания на землю и сопротивление цепи заземления и чем ближе человек стоит к заземлителю.

Защитное заземление представляет собой заземляющее устройство.

Заземляющее устройство - это совокупность проводников и заземлителей. Заземлитель - это проводник или совокупность металлических соединенных проводников, находящихся в соприкосновении с землей. В качестве заземлителя, в первую очередь, необходимо использовать естественные заземлители (железобетонные фундаменты).

В качестве искусственных заземлителей применяют стальные стержни из уголковой стали 60х60 мм, стальные трубы 35-50 мм. Стержни и трубы длиной от 2,5 до 5 м погружают в грунт вертикально и соединяют стальной шиной сечением не менее 100 мм2.

Заземляющий проводник - это проводник соединяющий заземляемые части с заземлителем. В помещениях прокладывается магистраль заземления, зануления - заземляющий или нулевой защитный проводник с двумя или более ответвлениями.

По расположению заземлителей относительно заземляемых частей заземляющие устройства подразделяются на выносные и контурные.

При выносном заземлении заземлители располагаются на некотором удалении от заземляемого оборудования, которое может оказаться вне поля растекания, и человек будет защищен только за счет малого сопротивления цепи заземления.

При контурном заземлении заземлители располагаются по контуру вокруг заземляемого оборудования, при этом поля растекания отдельных заземлителей накладываются, и разность потенциалов между точками поверхности внутри контура уменьшается. Для большего выравнивания потенциалов внутри контура прокладывают горизонтальные металлические полосы, соединенные с заземлителями - выравнивание потенциалов.

Все элементы заземляющих устройств соединяются сваркой. Заземляющие проводники соединяются с заземляемым оборудованием при помощи болтов, винтов, шпилек из металла, стойкого к коррозии или покрытых таким металлом, как и контактные площадки (ГОСТ 12.2.007.0-75).

Зануление выполняется соединением металлических частей ЭУ с заземленной точкой источника питания при помощи нулевого защитного проводника. При занулении металлические части электрооборудования соединяются с нулевым проводом, при этом должна быть обеспечена непрерывность цепи от каждого корпуса электрооборудования до заземленной нейтрали источника питания.

Кроме того нулевой провод имеет повторные заземления через каждые 250 м и на концах ответвлений длиной более 200 м, а также на вводах от ВЛ к электроустановкам.

Выравнивание потенциала - это метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно прикосновение или на которых может одновременно стоять человек. Оно выполняется в виде металлических горизонтальных полос (проводников) внутри котура защитного заземления.

205. Применение разделительных трансформаторов [8, c.113]

Электрическое разделение сетей - это разделение электрической сети на отдельные электрически не связанные между собой участки с помощью разделительных трансформаторов. При большой протяженности и разветвленности электрической сети она имеет большую емкость и небольшое сопротивление исправной изоляции фаз.

Вследствие этого могут возникнуть большие токи замыкания на землю, и повышается опасность при прикосновении человека к фазе. Для снижения этой опасности электрическую сеть разделяют на несколько небольших сетей такого же напряжения. Такие сети обладают небольшой емкостью и высоким сопротивлением фаз.

Более эффективным является разделение сетей напряжением до 1000 В. Для этой цели применяют разделительные трансформаторы, от которых питаются отдельные, чаще передвижные или переносные потребители (электроинструменты). Также для разделения сетей применяются преобразователи частоты и выпрямительные установки, которые не должны иметь электрической связи с питающей их сетью.

В сетях напряжением выше 1000 В прикосновение к фазе опасно, а применение разделительных трансформаторов значительно повышает стоимость электроустановок. Поэтому в таких сетях применяют другие защитные меры.

Целью разделения сетей является уменьшение тока замыкания на землю за счет высокого сопротивления изоляции фаз относительно земли, поэтому не допускается заземление нейтрали или обратного провода за разделительным трансформатором или преобразователем.

206. Защита от опасности при переходе напряжения с высокой стороны на низкую

[8, c.158]

Повреждение изоляции в трансформаторе может привести к замыканию между обмотками разных напряжений. В этом случае на сеть низкого напряжения накладывается более высокое напряжение, на которое эта сеть не рассчитана.

При переходе напряжения 6 или 10 кВ на сторону до 1000 В на низкое напряжение накладывается фазное напряжение более 3000 В (при 6 кВ - 3460 В).

В этом случае безопасность обеспечивается заземлением нейтрали и применением нулевого провода, при этом происходит замыкание на землю, и напряжение замыкания относительно земли не превысит линейного напряжения низкой стороны.

При невозможности заземления нейтрали применяется пробивной предохранитель - два электрода, разделенные слюдяной прокладкой с отверстиями, который включается между

нейтралью ( а при соединении в треугольник между фазой) и землей. Этот предохранитель срабатывает ( воздушные промежутки пробиваются и электроды замыкаются) при напряжении выше 3000 В.

При высшем напряжении ниже 1000 В применяются как меры защиты:

заземление вторичных обмоток понизительных трансформаторов (лучше средней точки обмотки);

заземляемые экраны или заземленные экранные обмотки, размещенные между первичной и вторичной обмотками трансформатора.

207. Применение малых напряжений [7, с.115]

Наибольшая степень безопасности достигается при напряжениях 6-10 В, т.к. в этом случае ток через человека минимальный. Но такое напряжение применяется редко (шахтерские лампы - 2,5 В, детские игрушки - 4,5 В, бытовые фонари ).

Малым принято считать напряжение не более 42 В. Чаще в производственных условиях применяется напряжение 12 и 36 В. Неудобством применения малого напряжения в силовых сетях является необходимость уменьшения протяженности этих сетей, т.е. применения отдельного источника для групп или одного потребителя (большой ток); поэтому такое напряжение применяется для электрифицированного инструмента, ручных и станочных ламп.

Для получения низкого напряжения запрещается применение автотрансформаторов. Применяются аккумуляторы или трансформаторы, причем вторичная обмотка последних заземляется (зануляется).

212. Плакаты по ТБ и знаки безопасности [8, c.199]

Согласно ПТБ применяются нижеследующие знаки и плакаты.

Предупреждающие:

- знак - Осторожно! Электрическое напряжение (треугольник с черными каймой и стрелой); укрепляется на внешней стороне дверей РУ, щитов, на опорах ВЛ;

- переносные плакаты с красными стрелой и каймой и надписями:

СТОЙ! НАПРЯЖЕНИЕ - вывешивается на временных и постоянных ограждениях, ограждающих место работы;

ИСПЫТАНИЕ.ОПАСНО ДЛЯ ЖИЗНИ - вывешиваются на оборудовании и ограждениях при испытаниях повышенным напряжением;

НЕ ВЛЕЗАЙ! УБЬЕТ! - вывешивается на опорах.

Запрещающие переносные плакаты (красные кайма и надпись):

НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ (на белом поле) - вывешивается на приводах разъединителей, у снятых предохранителей и т.п.;

НЕ ВКЛЮЧАТЬ.РАБОТА НА ЛИНИИ (на красном поле) - вывешивается на аппаратах и т.п., при ошибочном включении которых возможна подача напряжения на ВЛ;

НЕ ОТКРЫВАТЬ. РАБОТАЮТ ЛЮДИ (на белом поле) - вывешивается на вентилях, задвижках и т.п., при помощи которых возможна подача сжатого воздуха к выключателям и др.

Предписывающие переносные плакаты ( зеленый фон с белым кругом, в котором надпись):

РАБОТАТЬ ЗДЕСЬ, ВЛЕЗАТЬ ЗДЕСЬ.

Указательный переносной плакат - ЗАЗЕМЛЕНО (надпись на синем фоне с белой каймой).